Skip to main content

Advertisement

Log in

Comparison of Electrophoretic Protein Profiles from Sheep and Goat Parotid Saliva

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Saliva provides a medium for short-term adaptation to changes in diet composition, namely, the presence of plant secondary metabolites. Salivary proteins have biological functions that have particular influence on oral homeostasis, taste, and digestive function. Some salivary proteins, such as proline-rich proteins, are present in browsers but absent in grazers. Despite the significance of salivary proteins, their expression patterns in many herbivores are unknown. We investigated the sodium dodecyl sulfate-polyacrylamide gel electrophoresis profile of parotid salivary proteins from two domesticated species, one a grazer, the sheep, Ovis aries, and the other a mixed feeder, the goat, Capra hircus, both fed on the same conventional diet. With 12.5% polyacrylamide linear gels, we observed uniform patterns of salivary proteins within the two species. In the goat profile, 21 major bands were observed, and 19 in the sheep profile. Each band was subjected to peptide mass fingerprinting for purposes of identification, allowing for 16 successful protein identifications. Marked differences were observed between the species in the region of 25–35 kDa molecular weights: one band was present in significantly different intensities; three bands were present only in goats; and one band was present only in sheep. This is the first report of a comparison of the protein salivary composition of sheep and goats and suggests that future research should be conducted to reveal a physiological function for salivary proteins related to the differences in feeding behavior of these species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andoh, A., Fujiyama, Y., Kimura, T., Uchihara, H., Sakumoto, H., Okabe, H., and Bamba, T. 1997. Molecular characterization of complement components (C3, C4 and factor B) in human saliva. J. Clin. Immunol 17:404–407.

    Article  PubMed  CAS  Google Scholar 

  • Aps, J. K., and Martens, L. C. 2005. The physiology of saliva and transfer of drugs into saliva. Forensic Sci. Int 150:119–131.

    Article  PubMed  CAS  Google Scholar 

  • Austin, P. J., Suchar, L. A., obbins, C. T., and Hagerman, A. E. 1989. Tannin binding proteins in the saliva of deer and their absence in the saliva of sheep and cattle. J. Chem. Ecol 15:1335–1347.

    Article  CAS  Google Scholar 

  • Bedi, G. S., and Bedi, S. K. 1995. Purification and characterization of rat parotid glycosylated basic and acidic proline rich proteins. Prep. Biochem 25:119–132.

    Article  PubMed  CAS  Google Scholar 

  • Beeley, J. A., Sweeney, D., Lindsay, J. C., Buchanan, M. L., Sarna, L., and Khoo, K. S. 1991. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of human parotid salivary proteins. Electrophoresis 12:1032–1041.

    Article  PubMed  CAS  Google Scholar 

  • Bartolome, J., Franch, J., Plaixats, J., and Seligman, N. G. 1998. Diet selection by sheep and goats on Mediterranean heath-woodland range. J. Range Manage 51:383–391.

    Article  Google Scholar 

  • Clauss, M., Lason, K., Gehrke, J., Lechner-Doll, M., Fickel, J., GrÜne, T., and JÜrgen Streich, W. 2003a. Captive roe deer (Capreolus capreolus) select for low amounts of tannic acid but not quebracho: fluctuation of preferences and potential benefits. Comp. Biochem. Physiol. B Biochem. Mol. Biol 136:369–382.

    Article  PubMed  CAS  Google Scholar 

  • Clauss, M., Lechner-Doll, M., and Streich, W. J. 2003b. Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos 102:253–262.

    Article  Google Scholar 

  • Edwards, A. V., and Titchen, D. A. 2003. Autonomic control of protein production by the parotid gland of sheep. Auton. Neurosci 103:38–39.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, C. M., Corkery, P. P., and Edwards, A. V. 2003. Submandibular responses to stimulation of the parasympathetic innervation in anesthetized sheep. J. Appl. Physiol 95:1598–1605.

    PubMed  CAS  Google Scholar 

  • EkstrÖm, J., Marshall, T., Tobin, G., and Williams, K. M. 1996. Electrophoretic analysis of rat parotid salivary protein composition: investigation of the parasympathetic atropine resistant secretion. Acta Physiol. Scand 156:75–79.

    Article  PubMed  Google Scholar 

  • El Aich, A., and Waterhouse, A. 1999. Small ruminants in environmental conservation. Small Rum. Res 34:271–287.

    Article  Google Scholar 

  • Felton, G. W., and Duffey, S. S. 1991. Protective action of midgut catalase in lepidopteran larvae against oxidative plant defenses. J. Chem. Ecol 17:1715–1732.

    Article  CAS  Google Scholar 

  • Fernley, R. T., Wright, R. D., and Coghlan, J. P. 1988a. Complete amino acid sequence of ovine salivary carbonic anhydrase. Biochemistry 27:2815–2820.

    Article  PubMed  CAS  Google Scholar 

  • Fernley, R. T., Coghlan, J. P., and Wright, R. D. 1988b. Purification and characterization of a high-Mr carbonic anhydrase from sheep parotid gland. Biochem. J 249:201–207.

    PubMed  CAS  Google Scholar 

  • Fickel, J., Goritz, F., Joest, B. A., Hildebrandt, T., Hofmann, R. R., and Breves, G. 1998. Analysis of parotid and mixed saliva in roe deer (Capreolus capreolus L.). J. Comp. Physiol. [B] 168:257–264.

    CAS  Google Scholar 

  • Freeland, W. J., and Janzen, D. H. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat 108:269–289.

    Article  CAS  Google Scholar 

  • Ghafouri, B., Tagesson, C., and Lindhal, M. 2003. Mapping of proteins in human saliva using two-dimensional gel electrophoresis and peptide mass fingerprinting. Proteomics 3:1003–1015.

    Article  PubMed  CAS  Google Scholar 

  • Guo, T., udnick, P. A., Wang, W., Lee, C. S., Devoe, D. L., and Balgley, B. M. 2006. Characterization of the human salivary proteome by capillary isoelectric focusing/nanoreversed-phase liquid chromatography coupled with ESI-tandem MS. J. Proteome Res 5:1469–1478.

    Article  PubMed  CAS  Google Scholar 

  • Hagerman, A. E., and obbins, C. T. 1993. Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Can. J. Zool 71:628–633.

    CAS  Google Scholar 

  • Hardt, M., Thomas, L. R., Dixon, S. E., Newport, G., Agabian, N., Prakobphol, A., Hall, S. C., Witkowska, H. E., and Fisher, S. J. 2005. Toward defining the human parotid gland salivary proteome and peptidome: identification and characterization using 2D SDS-PAGE, ultrafiltration, HPLC, and mass spectrometry. Biochemistry 44:2885–2899.

    Article  PubMed  CAS  Google Scholar 

  • Henkin, R. I., Martin, B. M., and Agarwal, R. P. 1999. Decreased parotid saliva gustin/carbonic anhydrase VI secretion: an enzyme disorder manifested by gustatory and olfactory dysfunction. Am. J. Med. Sci 318:380–391.

    Article  PubMed  CAS  Google Scholar 

  • Hirtz, C., Chevalier, F., Centeno, D., Egea, J. C., ossignol, M., Sommerer, N., and de Periere, D. 2005. Complexity of the human whole saliva proteome. J. Physiol. Biochem 61:469–480.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, R. R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457.

    Article  Google Scholar 

  • Hu, S., Xie, Y. M., amachandran, P., Loo, R. R. O., Li, Y., Loo, J. A., and Wong, D. T. 2005. Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 5:1714–1728.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C. M 2004. Comparative proteomic analysis of human whole saliva. Arch. Oral Biol 49:951–962.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey, S. P., and Williamson, R. T. 2001. A review of saliva normal composition, flow and function. J. Prosthet. Dent 85:162–169.

    Article  PubMed  CAS  Google Scholar 

  • Katsukawa, H., Shang, Y., NakashimaM, K., Yang, K. H., Ohashi, R., Sugita, D., Mishima, K., Nakata, M., Ninomiya, Y., and Sugimura, T. 2002. Salivary cystatins influence ingestion of capsaicin-containing diets in the rat. Life Sci 71:457–467.

    Article  PubMed  CAS  Google Scholar 

  • Kimoto, M., Kishino, M., Yura, Y., and Ogawa, Y. 2006. A role of salivary carbonic anhydrase VI in dental plaque. Arch. Oral Biol 51:117–122.

    Article  PubMed  CAS  Google Scholar 

  • Kock, K., orley, S. D., Mullins, J. J., and Schmale, H. 1994. Denatonium bitter tasting among transgenic mice expressing rat von Ebner’s gland protein. Physiol. Behav 56:1173–1177.

    Article  PubMed  CAS  Google Scholar 

  • Lampe, J. W., Chen, C., Li, S., Prunty, J., Grate, M. T., Meehan, D. E., Barale, K. V., Dightman, D. A., Feng, Z., and Potter, J. D. 2000. Modulation of human glutathione S-transferases by botanically defined vegetable diets. Cancer Epidemiol. Biomarkers Prev 9:787–793.

    PubMed  CAS  Google Scholar 

  • Makkar, H. P. S., and Becker, K. 1998. Adaptation of cattle to tannins: role of proline-rich proteins in oak-fed cattle. Animal Sci 67:277–281.

    Article  CAS  Google Scholar 

  • Marsh, K. J., Wallis, I. R., Andrew, R. L., and Foley, W. J. 2006. The detoxification limitation hypothesis: where did it come from and where is it going? J. Chem. Ecol 32:1274–1266.

    Article  CAS  Google Scholar 

  • Marshall, T., Williams, K. M., EkstrÖm, J., Tobin, G., Bayard, C., and Vesterberg, O. 1993. Electrophoretic analysis of stimulated cat parotid saliva. Electrophoresis 14:1328–1332.

    Article  PubMed  CAS  Google Scholar 

  • Matsuo, R. 2000. Role of saliva in the maintenance of taste sensitivity. Critical Reviews Oral Biol. Med 11:216–229.

    Article  CAS  Google Scholar 

  • McArthur, C., Sanson, G. D., and Beal, A. M. 1995. Salivary proline-rich proteins in mammals: roles in oral homeostasis and counteracting dietary tannin. J. Chem. Ecol 21:663–691.

    Article  CAS  Google Scholar 

  • Mehansho, H., Hagerman, A., Clements, S., Butler, L. G., ogler, J. C., and Carlson, D. M. 1983. Modulation of proline-rich protein biosynthesis in rat parotid glands by sorghums with high tannin levels. Proc. Natl. Acad. Sci. U.S.A 80:3948–3952.

    Article  PubMed  CAS  Google Scholar 

  • Mehansho, H., Butler, L. G., and Carlson, D. M. 1987. Dietary tannins and salivary proline-rich proteins: interactions, induction and defense mechanism. Annu. Rev. Nutr 7:423–440.

    Article  PubMed  CAS  Google Scholar 

  • Mehansho, H., Asquith, T. N., Butler, L. G., ogler, J. C., and Carlson, D. M. 1992. Tannin-mediated induction of proline-rich protein synthesis. J. Agric. Food Chem 40:93–97.

    Article  CAS  Google Scholar 

  • Nadano, D., Yasuda, T., and Kishi, K. 1993. Measurement of deoxyribonuclease I activity in human tissues and body fluids by a single radial enzyme-diffusion method. Clin. Chem 39:448–452.

    PubMed  CAS  Google Scholar 

  • Neyraud, E., Sayd, T., Morzel, M., and Dransfield, E. 2006. Proteomic analysis of human whole and parotid salivas following stimulation by different tastes. J. Proteome Res 5:2474–2480.

    Article  PubMed  CAS  Google Scholar 

  • Ngwa, A. T., Pne, D. K., and Mafeni, J. M. 2000. Feed selection and dietary preferences of forage by small ruminants grazing natural pastures in the Sahelian zone of Carmeroon. Anim. Feed Sci. Technol 88:253–266.

    Article  Google Scholar 

  • Owens, F. N., Secrist, D. S., Hill, W. J., and Gill, D. R. 1998. Acidosis in cattle: a review. J. Anim. Sci 76:275–286.

    PubMed  CAS  Google Scholar 

  • Pande, R. S., Kemp, P. D., and Hodgson, J. 2002. Preference of goats and sheep for browse species under field conditions. N. Z. J. Agric. Res 45:97–102.

    Google Scholar 

  • Rodman, D. H., and Miller, D. J. 1992. Enzyme activities associated with salivary glands of the froghopper Eoscarta carnifex (F.) (Homoptera, Cercopoidae): possible role of salivary catalase in phytotoxicity. Aust. J. Zool 40:365–370.

    Article  CAS  Google Scholar 

  • Shimada, T. 2006. Salivary proteins as a defense against dietary tannins. J. Chem. Ecol 32:1149–1163.

    Article  PubMed  CAS  Google Scholar 

  • Spielman, A. I. 1990. Interaction of saliva and taste. J. Dent. Res 69:838–843.

    PubMed  CAS  Google Scholar 

  • Sreerama, L., Hedge, M. W., and Sladek, N. E. 1995. Identification of a class 3 aldehyde dehydrogenase in human saliva and increased levels of this enzyme, glutathione S-transferases, and DT-diaphorase in the saliva of subjects who continually ingest large quantities of coffee or broccoli. Clin. Cancer Res 1:1153–1163.

    PubMed  CAS  Google Scholar 

  • Stolte, M., and Ito, S. 1996. A comparative ultrastructural study of the parotid gland acinar cells of nine wild ruminant species (Mammalia, Artiodactyla). Eur. J. Morphol 34:79–85.

    Article  PubMed  CAS  Google Scholar 

  • Takeshita, H., Mogi, K., Yasuda, T., Nakajima, T., Nakashima, Y., Moi, S., Hoshino, T., and Kishi, K. 2000. Mammalian deoxyribonucleases I are classified into three types: pancreas, parotid, and pancreas-parotid (mixed), based on differences in their tissue concentrations. Biochem. Biophys. Res. Commun 269:481–484.

    Article  PubMed  CAS  Google Scholar 

  • Tenjo, E., Sawazaki, K., Yasuda, T., Nadano, D., Takeshita, H., Iida, R., and Kishi, K. 1993. Salivary deoxyribonuclease I polymorphism separated by polyacrylamide gel-isoelectric focusing and detected by the dried agarose film overlay method. Electrophoresis 14:1042–1044.

    Article  PubMed  CAS  Google Scholar 

  • Vitorino, R., Lobo, M. J., Ferrer-Correira, A. J., Dubin, J. R., Tomer, K. B., Domingues, P. M., and Amado, F. M. 2004. Identification of human whole saliva components using proteomics. Proteomics 4:1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Walz, A., Stuhler, K., Wattenberg, A., Hawranke, E., Meyer, H. E., Schmalz, G., Bluggel, M., and uhl, S. 2006. Proteome analysis of glandular parotid and submandibular-sublingual saliva in comparison to whole human saliva by two-dimensional gel electrophoresis. Proteomics 6:1631–1639.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K. M., Ekström, J., and Marshall, T. 1999a. High-resolution electrophoretic analysis of rat parotid salivary proteins. Electrophoresis 20:1373–1381.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K. M., Ekström, J., and Marshall, T. 1999b. The protein composition of ferret parotid saliva as revealed by high-resolution electrophoretic methods. Electrophoresis 20:2818–2823.

    Article  PubMed  CAS  Google Scholar 

  • Wilmarth, P. A., iviere, M. A., ustvold, D. L., Lauten, J. D., Maden, T. E., and David, L. L. 2004. Two-dimensional liquid chromatography study of the human whole saliva proteome. J. Proteome Res 3:1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Xie, H., hodus, N. L., Griffin, R. J., Carlis, J. V., and Griffin, T. J. 2005. A catalogue of human saliva proteins identified by free flow electrophoresis-based peptide separation and tandem mass spectrometry. Mol. Cell Proteomics 4:1826–1830.

    Article  PubMed  CAS  Google Scholar 

  • Yaegaki, K., Sakata, T., Ogura, R., Kameyama, T., and Sujaku, C. 1982. Influence of aging on DNase activity in human parotid saliva. J. Dent. Res 61:1222–1224.

    PubMed  CAS  Google Scholar 

  • Yamada, A., Nakamura, Y., Sugita, D., Shirosaki, S., Ohkuri, T., Katsukawa, H., Nonaka, K., Imoto, T., and Ninomiya, Y. 2006. Induction of salivary kallikreins by the diet containing a sweet suppressive peptide, gurmarin, in the rat. Biochem. Biophys. Res 346:386–392.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by Fundação para a Ciência e Tecnologia (FCT), Ministério da Ciência Tecnologia e Ensino Superior, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Sales Baptista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamy, E., da Costa, G., e Silva, F.C. et al. Comparison of Electrophoretic Protein Profiles from Sheep and Goat Parotid Saliva. J Chem Ecol 34, 388–397 (2008). https://doi.org/10.1007/s10886-008-9442-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9442-2

Keywords

Navigation