Skip to main content

Advertisement

Log in

The Detoxification Limitation Hypothesis: Where Did it Come From and Where is it Going?

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The detoxification limitation hypothesis is firmly entrenched in the literature to explain various aspects of the interaction between herbivores and plant toxins. These include explanations for the existence of specialist and generalist herbivores and for the prevalence of each of these. The hypothesis suggests that the ability of mammalian herbivores to eliminate plant secondary metabolites (PSMs) largely determines which plants, and how much, they can eat. The value of the hypothesis is that it provides a clear framework for understanding how plant toxins might limit diet breadth. Thus, it is surprising, given its popularity, that there are few studies that provide experimental support either for or against the detoxification limitation hypothesis. There are two likely reasons for this. First, Freeland and Janzen did not formally propose the hypothesis, although it is implicit in their paper. Second, it is a difficult hypothesis to test, requiring an understanding of the metabolic pathways that lead to toxin elimination. Recent attempts to test the hypothesis appear promising. Results suggest that herbivores can recognize mounting saturation of a detoxification pathway and adjust their feeding accordingly to avoid intoxication. One strategy they use is to ingest a food containing a toxin that is metabolized by a different pathway. This demonstrates that careful selection of food plants is a key to existing in a chemically complex environment. As more studies characterize the detoxification products of PSMs, we will better understand how widespread this phenomenon is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldrich, C. G., Rhodes, M. T., Miner, J. L., Kerley, M. S., and Paterson, J. A. 1993. The effects of endophyte-infected tall fescue consumption and use of a dopamine antagonist on intake, digestibility, body temperature, and blood constituents in sheep. Anim. Sci. 71:158–163.

    CAS  Google Scholar 

  • Allen, C. T., Peden-Adams, M. M., Eudaly, J., and Keil, D. E. 2003. Subchronic exposure to ellagic acid impairs cytotoxic T-cell function and suppresses humoral immunity in mice. Immunopharm. Immunot. 25:409–422.

    Article  CAS  Google Scholar 

  • Alm Bergvall, U. and Leimar, O. 2005. Plant secondary compounds and the frequency of food types affect food choice by mammalian herbivores. Ecology 86:2450–2460.

    Article  Google Scholar 

  • Alm Bergvall, U., Rautio, P., Kesti, K., Tuomi, J., and Leimar, O. 2006. Associational effects of plant defences in relation to within- and between-patch food choice by a mammalian herbivore: neighbor contrast susceptibility and defense. Oecologia 147:253–260.

    Article  PubMed  Google Scholar 

  • Amsel, L. P. and Levy, G. 1969. Drug biotransformation interactions in man. II. A pharmacokinetic study of the simultaneous conjugation of benzoic and salicylic acids with glycine. J. Pharm. Sci. 58:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Aranda, A., Sanchez-Vazquez, F. J., Zamora, S., and Madrid, J. A. 2000. Self-design of fish diets by means of self-feeders: validation of procedures. J. Physiol. Biochem. 56:155–166.

    Article  PubMed  CAS  Google Scholar 

  • Atsatt, P. R. and O'Dowd, D. J. 1976. Plant defense guilds. Science 193:24–29.

    Article  PubMed  Google Scholar 

  • Awaluddin, A. B. and McLean, S. 1985. Conjugation of benzoic acid in marsupials. Aust. J. Zool. 33:693–698.

    CAS  Google Scholar 

  • Baumgart, A., Schmidt, M., Schmitz, H.-J., and Schrenk, D. 2005. Natural furocoumarins as inducers and inhibitors of cytochrome P450 1A1 in rat hepatocytes. Biochem. Pharmacol. 69:657–667.

    Article  PubMed  CAS  Google Scholar 

  • Behmer, S. T., Simpson, S. J., and Raubenheimer, D. 2002. Herbivore foraging in chemically heterogeneous environments: nutrients and secondary metabolites. Ecology 83:2489–2501.

    Google Scholar 

  • Boyle, R. and McLean, S. 2004. Constraint of feeding by chronic ingestion of 1,8-cineole in the brushtail possum (Trichosurus vulpecula). J. Chem. Ecol. 30:757–775.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, R., McLean, S., Foley, W. J., and Davies, N. W. 1999. Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J. Chem. Ecol. 25:2109–2126.

    Article  CAS  Google Scholar 

  • Boyle, R., McLean, S., Foley, W., Davies, N. W., Peacock, E. J., and Moore, B. 2001. Metabolites of dietary 1,8-cineole in the male koala (Phascolarctos cinereus). Comp. Biochem. Physiol. C 129:385–395.

    CAS  Google Scholar 

  • Brenes-Arguedas, T. and Coley, P. D. 2005. Phenotypic variation and spatial structure of secondary chemistry in a natural population of a tropical tree species. Oikos 108:410–420.

    Article  Google Scholar 

  • Bridges, J. W., French, M. R., Smith, R. L., and Williams, R. T. 1970. The fate of benzoic acid in various species. Biochem. J. 118:47–51.

    PubMed  CAS  Google Scholar 

  • Burritt, E. A. and Provenza, F. D. 2000. Role of toxins in intake of varied diets by sheep. J. Chem. Ecol. 26:1991–2005.

    Article  CAS  Google Scholar 

  • Cassini, M. H. 1994. Behavioral mechanisms of selection of diet components and their ecological implications in herbivorous mammals. J. Mammal. 75:733–740.

    Article  Google Scholar 

  • Clifton, P. G., Burton, M. J., and Sharp, C. 1987. Rapid loss of stimulus-specific satiety after consumption of a second food. Appetite 9:149–156.

    Article  PubMed  CAS  Google Scholar 

  • Cork, S. J. 1981. Digestion and metabolism in the koala (Phascolarctos cinereus Goldfuss): an arboreal folivore. Ph.D. thesis. University of New South Wales, Australia.

  • Covelo, F. and Gallardo, A. 2004. Green and senescent leaf phenolics showed spatial autocorrelation in a Quercus robur population in northwestern Spain. Plant Soil 259:267–276.

    Article  CAS  Google Scholar 

  • Dearing, M. D. and Cork, S. 1999. Role of detoxification of plant secondary compounds on diet breadth in a mammalian herbivore, Trichosurus vulpecula. J. Chem. Ecol. 25:1205–1219.

    Article  CAS  Google Scholar 

  • Dearing, M. D. and Schall, J. J. 1992. Testing models of optimal diet assembly by the generalist herbivorous lizard Cnemidophorus murinus. Ecology 73:845–858.

    Article  Google Scholar 

  • Dearing, M. D., Mangione, A. M., and Karasov, W. H. 2000. Diet breadth of mammalian herbivores: nutrient versus detoxification constraints. Oecologia 123:397–405.

    Article  Google Scholar 

  • Dearing, M. D., Foley, W. J., and McLean, S. 2005. The influence of plant secondary metabolites on the nutritional ecology of herbivorous terrestrial vertebrates. Annu. Rev. Ecolog. Evol. Syst. 36:169–189.

    Article  Google Scholar 

  • DeGabriel, J., Foley, W. J., and Wallis, I. R. 2002. The effect of excesses and deficiencies in amino acids on the feeding behavior of the common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B 172:607–617.

    Article  PubMed  CAS  Google Scholar 

  • DiBattista, D. and Sitzer, C. A. 1994. Dietary variety enhances meal size in golden hamsters. Physiol. Behav. 55:381–383.

    Article  PubMed  CAS  Google Scholar 

  • Double, M. C., Peakall, R., Beck, N. R., and Cockburn, A. 2005. Dispersal, philopatry, and infidelity: dissecting local genetic structure in superb fairy-wrens (Malurus cyaneus). Evolution 59:625–635.

    PubMed  CAS  Google Scholar 

  • Duncan, A. J., Ginane, C., Gordon, I. J., and Orskov, E. R. 2003. Why do herbivores select mixed diets?, pp. 195–208, in L. t′Mannetje, L. Ramírez-Avilés, C. A. Sandoval-Castro, and J. C. Ku-Vera (eds.). Matching Herbivore Nutrition to Ecosystems Biodiversity. Proceedings of the VI International Symposium on the Nutrition of Herbivores. Universidad Autónoma de Yucatán, Factad de Medicina Veterinaria y Zootecnia, Merida, Mexico.

  • Foley, W. J., McLean, S., and Cork, S. J. 1995. Consequences of biotransformation of plant secondary metabolites on acid–base metabolism in mammals—a final common pathway. J. Chem. Ecol. 21:721–743.

    Article  CAS  Google Scholar 

  • Foley, W. J., Iason, G. R., and McArthur, C. 1999. Role of plant secondary metabolites in the nutritional ecology of mammalian herbivores: How far have we come in 25 years?, pp. 130–209, in H.-J. G. Jung and G. C. J. Fahey (eds.). Nutritional Ecology of Herbivores. Proceedings of the Vth International Symposium on the Nutrition of Herbivores. American Society of Animal Science, Savoy, USA.

  • Freeland, W. J. 1991. Plant secondary metabolites: Biochemical coevolution with herbivores, pp. 61–81, in R. T. Palo and C. T. Robbins (eds.). Plant Defenses Against Mammalian Herbivory. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Freeland, W. J. and Janzen, D. H. 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108:269–289.

    Article  CAS  Google Scholar 

  • Freeland, W. J. and Saladin, L. R. 1989. Choice of mixed diets by herbivores: the idiosyncratic effects of plant secondary compounds. Biochem. Syst. Ecol. 17:493–497.

    Article  CAS  Google Scholar 

  • Freeland, W. J. and Winter, J. W. 1975. Evolutionary consequences of eating: Trichosurus vulpecula (Marsupialia) and the genus Eucalyptus. J. Chem. Ecol. 1:439–455.

    Article  Google Scholar 

  • Freeland, W. J., Calcott, P. H., and Anderson, L. R. 1985. Tannins and saponin—interaction in herbivore diets. Biochem. Syst. Ecol. 13:189–193.

    Article  CAS  Google Scholar 

  • Galey, F. D., Holstege, D. M., Johnson, B. J., and Siemens, L. 1998. Toxicity and diagnosis of oleander (Nerium oleander) poisoning in livestock, pp. 215–219, in T. Garland and A. C. Barr (eds.). Toxic Plants and Other Natural Toxicants. CABI Publishing, Oxon, UK.

    Google Scholar 

  • Gardner, C. J., Armour, D. R., Beattie, D. T., Gale, J. D., Hawcock, A. B., Kilpatrick, G. J., Twissell, D. J., and Ward, P. 1996. GR205171: a novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul. Pept. 65:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Gilardi, J. D., Duffey, S. S., Munn, C. A., and Tell, L. A. 1999. Biochemical functions of geophagy in parrots: detoxification of dietary toxins and cytoprotective effects. J. Chem. Ecol. 25:897–922.

    Article  CAS  Google Scholar 

  • Ginane, C., Baumont, R., Lassalas, J., and Petit, M. 2002. Feeding behavior and intake of heifers fed on hays of various quality, offered alone or in a choice situation. Anim. Res. 51:177–188.

    Article  Google Scholar 

  • Gous, R. M. and Swatson, H. K. 2000. Mixture experiments: a severe test of the ability of a broiler chicken to make the right choice. Br. Poult. Sci. 41:136–140.

    Article  PubMed  CAS  Google Scholar 

  • Gregus, Z., Fekete, T., Varga, F., and Klaassen, C. D. 1993. Dependence of glycine conjugation on availability of glycine—role of the glycine cleavage system. Xenobiotica 23:141–153.

    Article  PubMed  CAS  Google Scholar 

  • Gregus, Z., Fekete, T., Halaszi, E., and Klaassen, C. D. 1996. Does hepatic ATP depletion impair glycine conjugation in vivo? Drug Metab. Dispos. 24:1347–1354.

    PubMed  CAS  Google Scholar 

  • Griffith, W. H. and Lewis, H. B. 1923. Studies in the synthesis of hippuric acid in the animal organism. V. The influence of amino-acids and related substances on the synthesis and rate of elimination of hippuric acid after the administration of benzoate. J. Biol. Chem. 57:1–24.

    CAS  Google Scholar 

  • Hagele, B. F. and Rowell-Rahier, M. 1999. Dietary mixing in three generalist herbivores: nutrient complementation or toxin dilution? Oecologia 119:521–533.

    Article  Google Scholar 

  • Harrington, R. A., Hamilton, C. W., Brogden, R. N., Linkewich, J. A., Romankiewicz, J. A., and Heel, R. C. 1983. Metoclopramide—an updated review of its pharmacological properties and clinical use. Drugs 25:451–494.

    Article  PubMed  CAS  Google Scholar 

  • Hjalten, J., Daneall, K., and Lundberg, P. 1993. Herbivore avoidance by association: vole and hare utilization of woody-plants. Oikos 68:125–131.

    Article  Google Scholar 

  • Iason, G. R. 2005. The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proc. Nutr. Soc. 64:1–9.

    Article  CAS  Google Scholar 

  • Iason, G. R. and Murray, A. H. 1996. The energy costs of ingestion of naturally occurring nontannin plant phenolics by sheep. Physiol. Zool. 69:532–546.

    CAS  Google Scholar 

  • Jakubas, W. J. and Mason, J. R. 1991. Role of avian trigeminal sensory system in detecting coniferyl benzoate, a plant allelochemical. J. Chem. Ecol. 17:2213–2221.

    Article  CAS  Google Scholar 

  • Klasing, K. C. and Calvert, C. C. 2000. The care and feeding of an immune system: an analysis of lysine needs, pp. 253–264, in G. E. Lobley, A. White and J. C. MacRae (eds.). Proceedings of the VIII International Symposium on Protein Metabolism and Nutrition. Wageningen University Press, Wageningen, Netherlands.

    Google Scholar 

  • Lawler, I. R., Foley, W. J., Pass, G. J., and Eschler, B. M. 1998. Administration of a 5HT3 receptor antagonist increases the intake of diets containing Eucalyptus secondary metabolites by marsupials. J. Comp. Physiol. B 168:611–618.

    Article  PubMed  CAS  Google Scholar 

  • Lawler, I. R., Foley, W. J., and Eschler, B. M. 2000. Foliar concentration of a single toxin creates habitat patchiness for a marsupial folivore. Ecology 81:1327–1338.

    Article  Google Scholar 

  • Lee, K. P., Cory, J. S., Wilson, K., Raubenheimer, D., and Simpson, S. J. 2006. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R. Soc. Lond., B Biol. Sci. 273:823–829.

    Article  CAS  Google Scholar 

  • Lin, J. H. and Lu, A. Y. H. 2001. Interindividual variability in inhibition and induction of cytochrome P450 enzymes. Annu. Rev. Pharmacol. Toxicol. 41:535–567.

    Article  PubMed  CAS  Google Scholar 

  • Lowry, J. B., Sumpter, E. A., McSweeney, C. S., Schlink, A. C., and Bowden, B. 1993. Phenolic acids in the fibre of some tropical grasses; effect on feed quality and their metabolism by sheep. Aust. J. Agric. Resour. 44:1123–1133.

    Article  CAS  Google Scholar 

  • Mangione, A. M., Dearing, M. D., and Karasov, W. H. 2000. Interpopulation differences in tolerance to creosote bush resin in desert woodrats (Neotoma lepida). Ecology 81:2067–2076.

    Article  Google Scholar 

  • Marsh, K. J., Foley, W. J., Cowling, A., and Wallis, I. R. 2003. Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B 173:69–78.

    PubMed  CAS  Google Scholar 

  • Marsh, K. J., Wallis, I. R., and Foley, W. J. 2005. Detoxification rates constrain feeding in common brushtail possums (Trichosurus vulpecula). Ecology 86:2946–2954.

    Article  Google Scholar 

  • Marsh, K. J., Wallis, I. R., McLean, S., Sorensen, J. S., and Foley, W. J. 2006. Conflicting demands on detoxification pathways influence how brushtail possums choose their diets. Ecology (in press).

  • McLean, S. and Duncan, A. J. 2006. Pharmacological perspectives on the detoxification of plant secondary metabolites: implications for ingestive behavior of herbivores. J. Chem. Ecol. (this volume).

  • McLean, S., Pass, G. J., Foley, W. J., Brandon, S., and Davies, N. W. 2001. Does excretion of secondary metabolites always involve a measurable metabolic cost? Fate of plant antifeedant salicin in common brushtail possum, Trichosurus vulpecula. J. Chem. Ecol. 27:1077–1089.

    Article  PubMed  CAS  Google Scholar 

  • McLean, S., Brandon, S., Davies, N. W., Foley, W. J., and Muller, H. K. 2004. Jensenone: biological reactivity of a marsupial antifeedant from Eucalyptus. J. Chem. Ecol. 30:19–36.

    Article  PubMed  CAS  Google Scholar 

  • Milchunas, D. G. and Noy-Meir, I. 2002. Grazing refuges, external avoidance of herbivory and plant diversity. Oikos 99:113–130.

    Article  Google Scholar 

  • Miura, K. and Ohsaki, N. 2004. Diet mixing and its effect on polyphagous grasshopper nymphs. Ecol. Res. 19:269–274.

    Article  Google Scholar 

  • Moore, B. D., Wallis, I. R., Palá-Paúl, J., Brophy J. J., Willis R. H., and Foley W. J. 2004. Antiherbivore chemistry of Eucalyptus—cues and deterrents for marsupial folivores. J. Chem. Ecol. 30:1743–1769.

    Article  PubMed  CAS  Google Scholar 

  • Moore B. D., Foley W. J., Wallis I. R., Cowling A., and Handasyde K. A. 2005. Eucalyptus foliar chemistry explains selective feeding by koalas. Biol. Lett. 1:64–67.

    Article  PubMed  CAS  Google Scholar 

  • Mulder G. J. 1995. Polymorphism in drug conjugation in man: is it a factor of concern in drug toxicity or efficacy? Eur. J. Pharm. Sci. 3:57–59.

    Article  CAS  Google Scholar 

  • Norberg A., Jones W. A., Hahn R. G., and Gabrielsson J. L. 2003. Role of variability in explaining ethanol pharmacokinetics—research and forensic applications. Clin. Pharmacokinet. 42:1–31.

    Article  PubMed  CAS  Google Scholar 

  • Osawa R., Bird P. S., Harbrow D. J., Ogimoto K., and Seymour G. J. 1993. Microbiological studies of the intestinal microflora of the koala, Phascolarctos cinereus. 1. Colonization of the cecal wall by tannin–protein complex degrading enterobacteria. Aust. J. Zool. 41:599–609.

    Article  Google Scholar 

  • Pass G. J. and Foley W. J. 2000. Plant secondary metabolites as mammalian feeding deterrents: separating the effects of the taste of salicin from its post-ingestive consequences in the common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B 170:185–192.

    Article  PubMed  CAS  Google Scholar 

  • Pass G. J. and McLean S. 2002. Inhibition of the microsomal metabolism of 1,8-cineole in the common brushtail possum (Trichosurus vulpecula) by terpenes and other chemicals. Xenobiotica 32:1109–1126.

    Article  PubMed  CAS  Google Scholar 

  • Pass G. J., McLean S., and Stupans I. 1999. Induction of xenobiotic metabolising enzymes in the common brushtail possum, Trichosurus vulpecula, by Eucalyptus terpenes. Comp. Biochem. Physiol. C 124:239–246.

    PubMed  CAS  Google Scholar 

  • Pfister J. A., Provenza F. D., Manners G. D., Gardner D. R., and Ralphs M. H. 1997. Tall larkspur ingestion: Can cattle regulate intake below toxic levels? J. Chem. Ecol. 23:759–777.

    Article  CAS  Google Scholar 

  • Pfister J. A., Panter K. E., Gardner D. R., Stegelmeier B. L., Ralphs M. H., Molyneux R. J., and Lee S. T. 2001. Alkaloids as anti-quality factors in plants on western US rangelands. J. Range Manag. 54:447–461.

    Article  Google Scholar 

  • Provenza F. D. 1995. Postingestive feedback as an elementary determinant of food preference and intake in ruminants. J. Range Manag. 48:2–17.

    Article  Google Scholar 

  • Provenza F. D. 1996. Acquired aversions as the basis for varied diets of ruminants foraging on rangelands. J. Anim. Sci. 74:2010–2020.

    PubMed  CAS  Google Scholar 

  • Provenza F. D., Pfister J. A., and Cheny C. D. 1992. Mechanisms of learning in diet selection with reference to phytotoxicosis in herbivores. J. Range Manag. 45:36–45.

    Article  Google Scholar 

  • Provenza F. D., Villalba J. J., Cheney C. D., and Werner S. J. 1998. Self-organization of foraging behavior: from simplicity to complexity without goals. Nutr. Res. Rev. 11:199–222.

    Article  PubMed  CAS  Google Scholar 

  • Radominska-Pandaya A., Czernik P. J., and Little, J. M. 1999. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab. Rev. 31:817–899.

    Article  PubMed  Google Scholar 

  • Rhodes, V. A. and McDaniel, R. W. 2001. Nausea, vomiting, and retching: Complex problems in palliative care. CA Cancer J. Clin. 51:232–248.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, C. T., Hagerman, A. E., Austin, P. J., McArthur, C., and Hanley, T. A. 1991. Variation in mammalian physiological responses to a condensed tannin and its ecological implications. J. Mammal. 72:480–486.

    Article  Google Scholar 

  • Rogosic, J., Estell, R. E., Skobic, D., Martinovic, A., and Maric, S. 2006. Role of species diversity and secondary compound complementarity on diet selection of Mediterranean shrubs by goats. J. Chem. Ecol. (this volume).

  • Rolls, B. J., Rowe, E. A., Rolls, E. T., Kingston, B., Megson, A., and Gunary, R. 1981. Variety in a meal enhances food intake in man. Physiol. Behav. 26:215–221.

    Article  PubMed  CAS  Google Scholar 

  • Rousset, O. and Lepart, J. 2003. Neighbourhood effects on the risk of an unpalatable plant being grazed. Plant Ecol. 165:197–206.

    Article  Google Scholar 

  • Scott, L. L. and Provenza, F. D. 2000. Lambs fed protein or energy imbalanced diets forage in locations and on foods that rectify imbalances. Appl. Anim. Behav. Sci. 68:293–305.

    Article  PubMed  Google Scholar 

  • Shariatmadari, F. and Forbes, J. M. 1993. Growth and food intake responses to diets of different protein contents and a choice between diets containing two concentrations of protein in broiler and layer strains of chicken. Br. Poult. Sci. 34:959–970.

    Article  PubMed  CAS  Google Scholar 

  • Singer, M. S., Bernays, E. A., and Carriere, Y. 2002. The interplay between nutrient balancing and toxin dilution in foraging by a generalist insect herbivore. Anim. Behav. 64:629–643.

    Article  Google Scholar 

  • Singleton, V. L. and Kratzner, F. H. 1969. Toxicity and related physiological activity of phenolic substances of plant origin. J. Agric. Food Chem. 17:497–512.

    Article  CAS  Google Scholar 

  • Snyder, M. J. and Glendinning, J. I. 1996. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound. J. Comp. Physiol. A 179:255–261.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, J. S. and Dearing, M. D. 2003. Elimination of plant toxins by herbivorous woodrats: revisiting an explanation for dietary specialization in mammalian herbivores. Oecologia 134:88–94.

    Article  PubMed  CAS  Google Scholar 

  • Sorensen, J. S., McLister, J. D., and Dearing, M. D. 2005. Plant secondary metabolites compromise the energy budgets of specialist and generalist mammalian herbivores. Ecology 86:125–139.

    Article  Google Scholar 

  • Stapley, J., Foley, W. J., Cunningham, R., and Eschler, B. 2000. How well can common brushtail possums regulate their intake of Eucalyptus toxins? J. Comp. Physiol. B 170:211–218.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, N., Morita, M., Hasegawa, S., Horii, A., Kubo, T., and Matsunaga, T. 1993. Neuropharmacology of motion sickness and Emesis—a review. Acta Oto-laryngol. 10–15.

  • Tamási, V., Vereczkey, L., Falus, A., and Monostory, K. 2003. Some aspects of interindividual variations in the metabolism of xenobiotics. Inflamm. Res. 52:322–333.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. W., Samson, C., and Bergeron, J. 1988. Metabolic costs associated with the ingestion of plant phenolics by Microtus pennsylvanicus. J. Mammal. 69:512–515.

    Article  Google Scholar 

  • Treit, D., Spetch, M. L., and Deutsch, J. A. 1983. Variety in the flavor of food enhances eating in the rat: a controlled demonstration. Physiol. Behav. 30:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Tuomi, J. and Augner, M. 1993. Synergistic selection of unpalatability in plants. Evolution 47:668–672.

    Article  Google Scholar 

  • Villalba, J. J. and Provenza, F. D. 2005. Foraging in chemically diverse environments: energy, protein, and alternative foods influence ingestion of plant secondary metabolites by lambs. J. Chem. Ecol. 31:123–138.

    Article  PubMed  CAS  Google Scholar 

  • Wallis, I. R., Watson, M. L., and Foley, W. J. 2002. Secondary metabolites in Eucalyptus melliodora: field distribution and laboratory feeding choices by a generalist herbivore, the common brushtail possum. Aust. J. Zool. 50:1–13.

    Article  Google Scholar 

  • Walton, K., Dorne, J. L., and Renwick, A. G. 2001. Uncertainty factors for chemical risk assessment: interspecies differences in glucuronidation. Food Chem. Toxicol. 39:1175–1190.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. and Provenza, F. D. 1997. Dynamics of preference by sheep offered foods varying in flavours, nutrients and a toxin. J. Chem. Ecol. 23:275–288.

    Article  CAS  Google Scholar 

  • Waterlow, J. C. 2006. Protein Turnover. CABI Publishing, Wallingford, UK.

    Google Scholar 

  • White, R. G. and Lawler, J. P. 2002. Can methane suppression during digestion of woody and leafy browse compensate for energy costs of detoxification of plant secondary compounds? A test with muskoxen fed willows and birch. Comp. Biochem. Phys. A 133:849–859.

    Article  CAS  Google Scholar 

  • Wiggins, N. L., McArthur, C., McLean, S., and Boyle, R. 2003. Effects of two plant secondary metabolites, cineole and gallic acid, on nightly feeding patterns of the common brushtail possum. J. Chem. Ecol. 29:1447–1464.

    Article  PubMed  CAS  Google Scholar 

  • Wiggins, N. L., McArthur, C., and Davies, N. W. 2006. Diet switching in a generalist mammalian folivore: fundamental to maximising intake. Oecologia 147:650–657.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen J. Marsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, K.J., Wallis, I.R., Andrew, R.L. et al. The Detoxification Limitation Hypothesis: Where Did it Come From and Where is it Going?. J Chem Ecol 32, 1247–1266 (2006). https://doi.org/10.1007/s10886-006-9082-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9082-3

Keywords

Navigation