Skip to main content
Log in

Attraction of Spodoptera frugiperda Larvae to Volatiles from Herbivore-Damaged Maize Seedlings

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants respond to insect attack with the induction of volatiles that function as indirect plant defenses through the attraction of natural enemies to the herbivores. Despite the fact that volatiles are induced in response to caterpillar attack, their reciprocal effects on the host location behaviors of the same foraging herbivores are poorly understood. We examined orientation responses of sixth instar fall armyworm [FAW; Spodoptera frugiperda (Smith)] to odors from herbivore-damaged and undamaged maize seedlings (Zea mays var. Golden Queen) in y-tube olfactometer bioassays. While both damaged and undamaged maize seedlings were attractive compared with air, sixth instars preferred odors from damaged maize seedlings over odors from undamaged maize seedlings. Gas chromatography–mass spectrometry analysis of plant volatiles revealed that linalool and 4,8-dimethyl-1,3,7-nonatriene were the major volatiles induced by FAW herbivory 6 hr after initial damage. Given its prominence in induced plants and established attractiveness to adult FAW, linalool was evaluated both as an individual attractant and as a supplemental component of whole plant odors. Volatile linalool was more attractive than air to sixth instar FAW over a broad range of release rates. FAW also responded selectively to different amounts of linalool, preferring the higher amount. The orientation preferences of FAW were readily manipulated through capillary release of linalool into the airstream of whole plant odors. FAW preferred linalool over undamaged plant odors, and linalool-supplemented plant odors over unsupplemented plant odors, indicating that olfactory preferences could be changed by alteration of a single volatile component. These results suggest that although many induced volatiles attract natural enemies of herbivores, these defenses may also inadvertently recruit more larval herbivores to an attacked plant or neighboring conspecifics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, P. and Alborn, H. 1999. Effects on oviposition behaviour and larval development of Spodoptera littoralis by herbivore-induced changes in cotton plants. Entomol. Exp. Appl. 92:45–51.

    Article  Google Scholar 

  • Anderson, P., Hilker, M., and Löfqvist, J. 1995. Larval diet influence on oviposition behavior in Spodoptera littoralis. Entomol. Exp. Appl. 74:71–82.

    Article  Google Scholar 

  • Anderson, P., Jonsson, M., and Morte, U. 2001. Variation in damage to cotton affecting larval feeding preference of Spodoptera littoralis. Entomol. Exp. Appl. 101:191–198.

    Article  Google Scholar 

  • Beredegué, M., Reitz, S. R., and Trumble, J. T. 1992. Host plant selection and development in Spodoptera exigua: Do mother and offspring know best? Entomol. Exp. Appl. 89:57–64.

    Google Scholar 

  • Bernasconi, M. L., Turlings, T. C. J., Ambrosetti, L., Bassetti, P., and Dorn, S. 1998. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol. Exp. Appl. 87:133–142.

    Article  CAS  Google Scholar 

  • Bernays, E. A. 1997. Feeding by lepidopteran larvae is dangerous. Ecol. Entomol. 22:121–123.

    Article  Google Scholar 

  • Bolter, C. J., Dicke, M., Van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetle to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.

    Article  CAS  Google Scholar 

  • Bultman, T. L. and Conard, N. J. 1998. Effects of endophytic fungus, nutrient level, and plant damage on performance of fall armyworm (Lepidoptera: Noctuidae). Environ. Entomol. 27:631–635.

    Google Scholar 

  • Carlsson, M. A., Anderson, P., Hartlieb, E., and Hansson, B. S. 1999. Experience-dependent modification of orientational response to olfactory cues in larvae of Spodoptera littoralis. J. Chem. Ecol. 25:2445–2454.

    Article  CAS  Google Scholar 

  • Chapman, J. W., Williams, T., Escribano, A., Caballero, P., Cave, R. D., and Goulson, D. 1999a. Age-related cannibalism and horizontal transmission of a nuclear polyhedrosis virus in larval Spodoptera frugiperda. Ecol. Entomol. 24:268–275.

    Article  Google Scholar 

  • Chapman, J. W., Williams, T., Escribano, A., Caballero, P., Cave, R. D., and Goulson, D. 1999b. Fitness consequences of cannibalism in the fall armyworm, Spodoptera frugiperda. Behav. Ecol. 10:298–303.

    Article  Google Scholar 

  • Chapman, J. W., Williams, T., Martinez, A. M., Cisneros, J., Caballero, P., Cave, R. D., and Goulson, D. 2000. Does cannibalism in Spodoptera frugiperda (Lepidoptera: Noctuidae) reduce the risk of predation? Behav. Ecol. Sociobiol. 48:321–327.

    Article  Google Scholar 

  • Davis, F. M., Williams, W. P., Chang, Y. M., Baker, G. T., and Hedin, P. A. 1999. Differential growth of fall armyworm larvae (Lepidoptera: Noctuidae) reared on three phenotypic regions of whorl leaves from a resistant and a susceptible maize hybrid. Fla. Entomol. 82:248–254.

    Article  Google Scholar 

  • De Moraes, C. M., Mescher, M. C., and Tumlinson, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410:577–580.

    Article  PubMed  CAS  Google Scholar 

  • Deng, J. Y., Wei, H. Y., Huang, Y. P., and Du, J. W. 2004. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. J. Chem. Ecol. 30:2037–2045.

    Article  PubMed  CAS  Google Scholar 

  • Dicke, M. and Sabelis, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.

    Article  Google Scholar 

  • Doak, P. 2000. Population consequences of restricted dispersal for an insect herbivore in a subdivided habitat. Ecology 81:1828–1841.

    Article  Google Scholar 

  • Foster, R. E. 1989. Strategies for protecting sweet corn ears from damage by fall armyworms (Lepidoptera: Noctuidae) in Southern Florida. Fla. Entomol. 72:146–151.

    Article  Google Scholar 

  • Glendinning, J. I. 2002. How do herbivorous insects cope with noxious secondary plant compounds in their diet? Entomol. Exp. Appl. 104:15–25.

    Article  CAS  Google Scholar 

  • Gouinguené, S., Alborn, H., and Turlings, T. C. J. 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29:145–162.

    Article  PubMed  Google Scholar 

  • Gouinguené, S., Pickett, J. A., Wadhams, L. J., Birkett, M. A., and Turlings, T. C. J. 2005. Antennal electrophysiological responses of three parasitic wasps to caterpillar-induced volatiles from maize (Zea mays mays), cotton (Gossypium herbaceum), and cowpea (Vigna unguiculata). J. Chem. Ecol. 31:1023–1038.

    Article  PubMed  CAS  Google Scholar 

  • Harari, A. R., Ben-Yakir, D., and Rosen, D. 1994. Mechanism of aggregation behavior in Maladera matrida Argaman (Coleoptera: Scarabidae). J. Chem. Ecol. 20:361–371.

    Article  CAS  Google Scholar 

  • Heath, R. R. and Manukian, A. 1994. An automated-system for use in collecting volatile chemicals released from plants. J. Chem. Ecol. 20:593–608.

    Article  CAS  Google Scholar 

  • Hoballah, M. E. and Turlings, T. C. J. 2005. The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. J. Chem. Ecol. 31:2003–2018.

    Article  PubMed  CAS  Google Scholar 

  • Hoballah, M. E., Kollner, T. G., Degenhardt, J., and Turlings, T. C. J. 2004. Costs of induced volatile production in maize. Oikos 105:168–180.

    Article  Google Scholar 

  • Jonsson, M. and Anderson, P. 1999. Electrophysiological response to herbivore-induced host plant volatiles in the moth Spodoptera littoralis. Physiol. Entomol. 24:377–385.

    Article  CAS  Google Scholar 

  • Kaitaniemi, P., Vehvilainen, H. and Ruohomaki, K. 2004. Movement and disappearance of mountain birch defoliators are influenced by the interactive effects of plant architecture and induced resistance. Ecol. Entomol. 29:437–446.

    Article  Google Scholar 

  • Kakimoto, T., Fujisaki, K., and Miyatake, T. 2003. Egg laying preference, larval dispersion, and cannibalism in Helicoverpa armigera (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 96:793–798.

    Article  Google Scholar 

  • Karban, R. and Baldwin, I. 1997. Induced Responses to Herbivory. University of Chicago Press, Chicago, IL.

    Google Scholar 

  • King, E. G. and Leppla, N. C. 1984. Advances and Challenges in Insect Rearing. U.S. Government Printing Office.

  • Landolt, P. J. 1993. Effects of host plant leaf damage on cabbage moth attraction and oviposition. Entomol. Exp. Appl. 67:79–85.

    Article  Google Scholar 

  • Landolt, P. J. 2001. Moth experience and not plant injury affected female cabbage looper moth (Lepidoptera: Noctuidae) orientation to potato plants. Fla. Entomol. 84:243–249.

    Article  Google Scholar 

  • Landolt, P. J., Tumlinson, J. H., and Alborn, D. H. 1999. Attraction of Colorado potato beetle (Coleoptera: Chrysomelidae) to damaged and chemically induced potato plants. Environ. Entomol. 28:973–978.

    Google Scholar 

  • Landolt, P. J., Brumley, J. A., Smithhisler, C. L., Biddick, L. L., and Hofstetter, R. W. 2000. Apple fruit infested with codling moth are more attractive to neonate codling moth larvae and possess increased amounts of (E,E)-alpha-farnesene. J. Chem. Ecol. 26:1685–1699.

    Article  CAS  Google Scholar 

  • Laue, M. 2000. Immunolocalization of general odorant-binding protein in antennal sensilla of moth caterpillars. Arthropod Struct. Dev. 29:57–73.

    Article  PubMed  CAS  Google Scholar 

  • Lougrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popilia japonica Newman). J. Chem. Ecol. 21:1457–1467.

    Article  Google Scholar 

  • Luginbill, P. 1928. The fall armyworm. U.S. Dept Agric. Tech. Bull. 34:1–91.

    Google Scholar 

  • Malo, E. A., Castrejon-Gomez, V. R., Cruz-Lopez, L., and Rojas, J. C. 2004. Antennal sensilla and electrophysiological response of male and female Spodoptera frugiperda (Lepidoptera: Noctuidae) to conspecific sex pheromone and plant odors. Ann. Entomol. Soc. Am. 97:1273–1284.

    Article  Google Scholar 

  • Marchand, D. and McNeil, J. N. 2004. The importance of behavioral plasticity for maximizing foraging efficiency in frugivorous lepidopteran larvae. J. Insect Behav. 17:673–684.

    Article  Google Scholar 

  • Martin, P., Wiseman, B., and Lynch, R. 1980. Action thresholds for fall armyworm on grain sorghum and coastal Bermuda grass. Fla. Entomol. 63:375–404.

    Article  Google Scholar 

  • McAuslane, H. J. and Alborn, H. T. 2000. Influence of previous herbivory on behavior and development of Spodoptera exigua larvae on glanded and glandless cotton. Entomol. Exp. Appl. 97:283–291.

    Article  Google Scholar 

  • Meagher, R. L. and Nagoshi, R. N. 2004. Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol. Entomol. 29:614–620.

    Article  Google Scholar 

  • Meagher, R. L., Nagoshi, R. N., Stuhl, C., and Mitchell, E. R. 2004. Larval development of fall armyworm (Lepidoptera: Noctuidae) on different cover crop plants. Fla. Entomol. 87:454–460.

    Article  Google Scholar 

  • Miranda-Anaya, M., Guevara-Fefer, P., and Garcia-Rivera, B. E. 2002. Circadian locomotor activity in the larva and adult fall armyworm, Spodoptera frugiperda (Noctuidae): Effect of feeding with the resistant variety of maize CML67. Biol. Rhythm Res. 33:475–486.

    Article  Google Scholar 

  • Nagoshi, R. N. and Meagher, R. L. 2004. Behavior and distribution of the two fall armyworm host strains in Florida. Fla. Entomol. 87:440–449.

    Article  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1997. Induced synthesis of plant volatiles. Nature 385:30–31.

    Article  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–331.

    Article  PubMed  Google Scholar 

  • Pashley, D. P. 1988. Quantitative genetics, development, and physiological adaptation in host strains of fall armyworm. Evolution 42:93–102.

    Article  Google Scholar 

  • Pitre, H. N., Mulrooney, J. E., and Hogg, D. B. 1983. Fall armyworm (Lepidoptera: Noctuidae) oviposition: Crop preferences and egg distribution on plants. J. Econ. Entomol. 76:463–466.

    Google Scholar 

  • Rodriguez-Saona, C. and Thaler, J. S. 2005. Herbivore-induced responses and patch heterogeneity affect abundance of arthropods on plants. Ecol. Entomol. 30:156–163.

    Article  Google Scholar 

  • Roitberg, B. D. and Mangel, M. 1993. Parent-offspring conflict and life history consequences in herbivorous insects. Am. Nat. 1442:443–456.

    Article  Google Scholar 

  • Røstelien, T., Stranden, M., Borg-Karlson, A. K., and Mustaparta, H. 2005. Olfactory receptor neurons in two heliothine moth species responding selectively to aliphatic green leaf volatiles, aromatic compounds, monoterpenes and sesquiterpenes of plant origin. Chem. Senses 30:443–461.

    Article  PubMed  CAS  Google Scholar 

  • Saxena, K. N. and Khattar, P. 1977. Orientation of Papilio demoleus larvae in relation to size, distance, and combination pattern of visual stimuli. J. Insect Physiol. 23:1421–1428.

    Article  Google Scholar 

  • Schoonhoven, L. M. and Van Loon, J. J. A. 2002. An inventory of taste in caterpillars: Each species its own key. Acta Zool. Acad. Sci. Hung. 48:215–263.

    Google Scholar 

  • Shelton, A. M. and Badenes-Perez, F. R. 2006. Concepts and applications of trap cropping in pest management. Annu. Rev. Entomol. 51:285–308.

    Article  PubMed  CAS  Google Scholar 

  • Sih, A. 1993. Effects of ecological interactions on forager diets: Competition, predation risk, parasitism, and prey behavior, pp 182–212, in R. N. Hughes (ed.). Diet Selection: An Interdisciplinary Approach to Foraging Behavior. Blackwell, Oxford.

    Google Scholar 

  • Singer, M. S., Bernays, E. A., and Carriere, Y. 2002. The interplay between nutrient balancing and toxin dilution in foraging by a generalist insect herbivore. Anim. Behav. 64:629–643.

    Article  Google Scholar 

  • Singer, M. S. and Stireman, J. O. 2001. How foraging tactics determine host-plant use by a polyphagous caterpillar. Oecologia 129:98–105.

    Article  Google Scholar 

  • Singer, M. S. and Stireman, J. O. 2003. Does anti-parasitoid defense explain host-plant selection by a polyphagous caterpillar? Oikos 100:554–562.

    Article  Google Scholar 

  • Sparks, A. N. 1979. A review of the biology of the fall armyworm. Fla. Entomol. 62:82–86.

    Article  Google Scholar 

  • Stamps, J. and Krishnan, V. V. 2005. Nonintuitive cue use in habitat selection. Ecology 86:2860–2867.

    Article  Google Scholar 

  • Stamps, J. A., Krishnan, V. V., and Reid, M. L. 2005. Search costs and habitat selection by dispersers. Ecology 86:510–518.

    Article  Google Scholar 

  • Thompson, J. N. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol. Exp. Appl. 47:3–14.

    Article  Google Scholar 

  • Tindall, K. V. and Stout, M. J. 2001. Plant-mediated interactions between the rice water weevil and fall armyworm in rice. Entomol. Exp. Appl. 101:9–17.

    Article  Google Scholar 

  • Turlings, T. C. and Tumlinson, J. H. 1992. Systemic release of chemical signals by herbivore-injured corn. Proc. Natl. Acad. Sci. U.S.A. 89:8399–8402.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking wasps. Science 250:1251–1253.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. J. C., Loughrin, J. H., McCall, P. J., Rose, U. S., Lewis, W. J., and Tumlinson, J. H. 1995. How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc. Natl. Acad. Sci. U.S.A. 92:4169–4174.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C. J., Lengwiler, U. B., Bernasconi, M. L., and Wechsler, D. 1998. Timing of induced volatile emissions in maize seedlings. Planta 207:146–152.

    Article  CAS  Google Scholar 

  • Van Dam, N. M., Hermenau, U., and Baldwin, I. T. 2001. Instar-specific sensitivity of specialist Manduca sexta larvae to induced defences in their host plant Nicotiana attenuata. Ecol. Entomol. 26:578–586.

    Article  Google Scholar 

  • Ward, S. A. 1987. Optimal habitat selection in time-limited dispersers. Am. Nat. 129:568–579.

    Article  Google Scholar 

  • Weatherston, I., Miller, D., and Dohse, L. 1985. Capillaries as controlled-release devices for insect pheromones and other volatile substances—a reevaluation. Part I. Kinetics and development of predictive model for glass capillaries. J. Chem. Ecol. 11:953–965.

    Article  Google Scholar 

  • Zalucki, M. P., Clarke, A. R., and Malcolm, S. B. 2002. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47:361–393.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Hans Alborn, Sean Collins, Art Zangerl, and two anonymous reviewers for helpful comments that improved the manuscript. We also thank Julia Meredith, Nancy Lowman, and Valerie McManus for assistance in the maintenance of plants and insects used in this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Schmelz.

Additional information

The use of trade, firm, or corporation names in this publication (or page) is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, M.J., Schmelz, E.A., Meagher, R.L. et al. Attraction of Spodoptera frugiperda Larvae to Volatiles from Herbivore-Damaged Maize Seedlings. J Chem Ecol 32, 1911–1924 (2006). https://doi.org/10.1007/s10886-006-9117-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9117-9

Keywords

Navigation