Skip to main content
Log in

Compatible and Incompatible Xanthomonas Infections Differentially Affect Herbivore-Induced Volatile Emission by Pepper Plants

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Recent studies have alerted us to the potential for conflicts between pathogen- and herbivore-induced plant defenses. The lack of studies on the induced chemical changes that simultaneous insect and pathogen attacks have on the host plant has become apparent. In the present study, we found that pepper plant volatile profiles can be differentially induced by compatible and incompatible bacterial infection and beet armyworm (BAW) damage when applied alone or in combination upon the same host. We also found that plants under simultaneous compatible bacterial and BAW attack are able to produce volatiles in quantities greater than those produced by healthy plants in response to BAW feeding. In contrast, plants exposed to the incompatible pathogen challenge showed a total volatile release below the level of healthy plants exposed to BAW damage. This suppression of BAW-induced volatiles coincided with increased methyl salicylate production from incompatible bacteria-infected plants. Feeding choice experiments revealed that, when given a choice, BAW larvae fed significantly more on leaves of plants infected with the incompatible bacteria as soon as 2 d after inoculation, while a significant increase in insect feeding on the plants infected with the compatible bacterial strain was not seen until day 4 after inoculation. Additionally, survival for third instars to pupation was significantly higher when feeding on infected plants than on healthy plants, regardless of compatibility. These results are indicative of lowered herbivore defenses due to disease progression on the plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alborn, H. T., Röse, U. S. R., and McAuslane, H. J. 1996. Systemic induction of feeding deterrents in cotton plants by feeding of Spodoptera spp. larvae. J. Chem. Ecol. 22:919–932.

    Article  CAS  Google Scholar 

  • Bostock, R. M. 1999. Signal conflicts and synergies in induced resistance to multiple attackers. Physiol. Mol. Plant Pathol. 55:99–109.

    Article  Google Scholar 

  • Cardoza, Y. J., Alborn, H. T., and Tumlinson, J. H. 2002. In vivo volatile emissions of peanut plants induced by fungal infection and insect damage. J. Chem. Ecol. 28:161–174.

    Article  PubMed  CAS  Google Scholar 

  • Cardoza, Y. J., Teal, P. E. A., and Tumlinson, J. H. 2003a. Effect of peanut plant fungal infection on oviposition preference by Spodoptera exigua and on host searching behavior by Cotesia marginiventris. Environ. Entomol. 32:970–976.

    Google Scholar 

  • Cardoza, Y. J., Alborn, H. T., Lait, C. G., Schmelz, E. A., Huang, J., and Tumlinson, J. H. 2003b. Fungus-induced biochemical changes in peanut plants and their effect on development of beet armyworm, Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae. Environ. Entomol. 32:220–228.

    Article  CAS  Google Scholar 

  • Cui, J., Jander, G., Racki, L. R., Kim, P. D., Pierce, N. E., and Asubel, F. M. 2002. Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae. Plant Physiol. 129:551–564.

    Article  PubMed  CAS  Google Scholar 

  • Dangl, J. L. and Jones, J. D. G. 2001. Plant pathogens and integrated defense responses to infection. Nature 411:826–833.

    Article  PubMed  CAS  Google Scholar 

  • Doares, S. H., Narvaez-Vasquez, J., Conconi, A., and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108:1741–1746.

    PubMed  CAS  Google Scholar 

  • Felton, G. W., Korth, K. L., Bi, J. L., Wesley, S. V., Huhman, D. V., Mathews, M. C., Murphy, J. B., Lam, C., and Nixon, R. A. 1999. Inverse relationship between systemic resistance of plants to microorganisms and to insect herbivory. Curr. Biol. 9:317–320.

    Article  PubMed  CAS  Google Scholar 

  • Fidantsef, A. L., Stout, M. J., Thaler, J. S., Duffey, S. S., and Bostock, R. M. 1999. Signal interactions in pathogen and insect attack: Expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:97–114.

    Article  CAS  Google Scholar 

  • Hahn, M. G. 1996. Microbial elicitors and their receptors in plants. Annu. Rev. Phytopathol. 34:387–412.

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack, K. E. and Jones, J. D. G. 1997. Plant disease resistance genes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:575–607.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Cardoza, Y. J., Schmelz, E. A., Raina, R., Engelberth, J., and Tumlinson, J. H. 2003. Differential volatile emissions and salicylic acid levels from tobacco plants in response to different strains of Pseudomonas syringae. Planta 217:767–775.

    Article  PubMed  CAS  Google Scholar 

  • Karban, R., Adamchack, R., and Schnathorst, W. C. 1987. Induced resistance and interspecific competition between spider mites and vascular wilt fungus. Science 235:678–679.

    Article  PubMed  Google Scholar 

  • King, E. G. and Leppla, N. C. 1984. Advances and challenges in insect rearing. Agricultural Research Service, USDA. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Loughrin, J. H., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1995. Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. J. Chem. Ecol. 21:1217–1226.

    Article  CAS  Google Scholar 

  • McCall, P. J., Turlings, T. C. J., Loughrin, J., Proveaux, A. T., and Tumlinson, J. H. 1994. Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J. Chem. Ecol. 20:3039–3050.

    Article  CAS  Google Scholar 

  • Mür, A. J., Kenton, P., and Draper, J. 1997. Something in the air: Volatile signals in plant defence. Trend Microbiol. 5:297–300.

    Article  Google Scholar 

  • Paré, P. W. and Tumlinson, J. H. 1997. Induced synthesis of plant volatiles. Nature 385:30–31.

    Article  Google Scholar 

  • Peña-Cortes, H., Albrecht, T., Pratt, S., Weiler, E. W., and Willmitzer, L. 1993. Aspirin prevents wound induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128.

    Article  Google Scholar 

  • Röse, U. S. R., Manukian, A., Heath, R. R., and Tumlinson, J. H. 1996. Volatile semiochemicals from undamaged cotton leaves. Plant Physiol. 111:487–495.

    PubMed  Google Scholar 

  • Röse, U. S. R., Lewis, W. J., and Tumlinson, J. H. 1998. Specificity of systemically released cotton volatiles as attractants for specialist and generalist parasitic wasps. J. Chem. Ecol. 24:303–319.

    Article  Google Scholar 

  • Ryan, C. A. and Jagendorf, A. 1995. Self defense by plants. Proc. Natl. Acad. Sci. USA 92:4075.

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute. 1996. SAS/STAT software, changes and enhancements through release 6.11. SAS Institute, Cary, NC.

    Google Scholar 

  • Scröder, F. 1998. Induced chemical defense in plants. Angew. Chem. Int. Ed. 37:1213–1216.

    Article  Google Scholar 

  • Stout, M. J., Fidantsef, A. L., Duffey, S. S., and Bostock, R. M. 1999. Signal interactions in pathogen and insect attack: Systemic plant-mediated interactions between pathogen and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:115–130.

    Article  CAS  Google Scholar 

  • Thaler, J. S., Fidantsef, A. L., Duffey, S. S., and Bostock, R. M. 1999. Tradeoffs in plant defense against pathogens and herbivores? J. Chem. Ecol. 25:1597–1609.

    Article  CAS  Google Scholar 

  • Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Vogelsang, R., Cammue, B. P. A., and Broekeaert, W. F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107–15111.

    Article  PubMed  CAS  Google Scholar 

  • Turlings, T. C. J. and Tumlinson, J. H. 1991. Do parasitoids use herbivore-induced plant chemical defenses to locate hosts? Fla. Entomol. 74:42–50.

    Article  CAS  Google Scholar 

  • Turlings, T. C., Tumlinson, J. H., Heath, R. R., Proveaux, A. T., and Doolittle, R. E. 1991. Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. J. Chem. Ecol. 17:2235–2251.

    Article  CAS  Google Scholar 

  • Turlings, T. C. J., McCall, P. L., Alborn, H. T., and Tumlinson, J. H. 1993. An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. J. Chem. Ecol. 19:411–425.

    Article  CAS  Google Scholar 

  • Wasternack, C. and Parthier, B. 1997. Jasmonate-signalled plant gene expression. Trends Plant Sci. 2:302–307.

    Article  Google Scholar 

  • Zeringue, H. J. Jr. and McCormick, S. P. 1989. Relationship between cotton leaf-derived volatiles and growth of Aspergillus flavus. JAOCS 66:581–585.

    Article  CAS  Google Scholar 

  • Zeringue, H. J. Jr. and McCormick, S. P. 1990. Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon 28:445–448.

    Article  PubMed  CAS  Google Scholar 

  • Zeringue, H. J. Jr, Brown, R. L., Neucere, N. J., and Cleveland, T. E. 1996. Relationship between C6–C12 alkanal and alkenal volatile contents and resistance of maize genotypes to Aspergillus flavus and aflatoxin production. J. Agric. Food Chem. 44:403–407.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Hans T. Alborn, Peggy Brennan, and Carolina Briceño (USDA-ARS/CMAVE, Gainesville, FL) for technical support. Our appreciation is extended to Nancy Epsky (USDA-ARS/SAA, Miami, FL) and Claudio Gratton (Department of Entomology, University of Wisconsin, Madison, WI) for comments on a previous version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin J. Cardoza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoza, Y.J., Tumlinson, J.H. Compatible and Incompatible Xanthomonas Infections Differentially Affect Herbivore-Induced Volatile Emission by Pepper Plants. J Chem Ecol 32, 1755–1768 (2006). https://doi.org/10.1007/s10886-006-9107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9107-y

Key words

Navigation