Skip to main content
Log in

Quadrupole storage mass spectrometry of mono- and dimethylalkanes

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Monomethyl and dimethylalkanes with one, two, three, four, five, and seven methylene groups separating the methyl branches were synthesized and analyzed by magnetic sector and quadrupole storage (ion trap) mass spectrometry. The spectra produced by the magnetic sector instrument were in good agreement with previously reported data, whereas the ion trap spectrometer produced ions resulting from cleavages adjacent to the branching points, markedly different than those from the magnetic sector instrument. Fragmentation patterns show that the ion trap mass spectrometer can be used to characterize branched alkanes in nanogram and subnanogram quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alborn, H.T., Doolittle, R.E., Zanen, P.O., Cardé, R.T., andTumlinson, J.H. 1995. Oviposition kairomones ofBrachymeria intermedia a parasite of gypsy moth pupae.J. Chem. Ecol. In press.

  • Biemann, K. 1962. Mass Spectrometry Organic Chemical Applications, p. 80. McGraw-Hill, New York.

    Google Scholar 

  • Blomquist, G.J., andDillwith, J.W. 1985. Cuticular lipids, pp. 121–125,in G.A. Kerbut and L.I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Vol. 3. Pergamon Press, Elmsford, New York.

    Google Scholar 

  • Hadley, N.F. 1994. Water Relations of Terrestrial Arthropods. Academic Press, San Diego.

    Google Scholar 

  • Jackson, L.L., andBlomquist, G.J. 1976. Insect waxes, pp. 201–233,in P.E. Kolattukudy (ed.). Chemistry and Biochemistry of Natural Waxes. Elsevier, Amsterdam.

    Google Scholar 

  • Jacob, J. 1979. Chemosystematic observations on the cuticular lipids of beetles.Biochem. System. Ecol. 7:141–145.

    Google Scholar 

  • Jones, R. L., Lewis, W.J., Bowman, M.C., Beroza, M., andBierl, B.A. 1971. Host-seeking stimulant for parasite of corn earworm: Isolation, identification, and synthesis.Science 173:842–843.

    Google Scholar 

  • Lockey, K.H. 1976. Cuticular hydrocarbons ofLocusta, Schistocerca andPeriplaneta, and their role in waterproofing.Insect Biochem. 6:457–472.

    Google Scholar 

  • Lockey, K.H. 1978. The adult cuticular hydrocarbons ofTenebrio molitor andTenebrio obscurus (F.) (Coleoptera: Tenebrionidea).Insect Biochem. 8:237–250.

    Google Scholar 

  • Lockey, K.H. 1980. Insect cuticular hydrocarbons.Comp. Biochem. Physiol. 65B:457–462.

    Google Scholar 

  • March, R.E., andHughes, R.J. 1989. Dynamic range and detection limit, pp. 334–335,in J.D. Winegardner (ed.). Quadrupole Storage Mass Spectrometry: Chemical Analysis, Vol. 102. John Wiley & Sons, New York.

    Google Scholar 

  • McCarthy, E.D., Han, J., andCalvin, M. 1968. Hydrogen atom transfer in mass spectrometric fragmentation patterns of saturated aliphatic hydrocarbons.Anal. Chem. 40:1475–1480.

    Google Scholar 

  • Nelson, D.R., andSukkestad, D.R. 1970. Normal and branched aliphatic hydrocarbons from the eggs of tobacco hornworm.Biochemistry 9:4601–4611.

    PubMed  Google Scholar 

  • Nelson, D.R., andSukkestad, D.R. 1975. Normal and branched alkanes from cast skins of the grasshopperSchistocerca vaga (Scudder).J. Lipid Res. 16:12–18.

    PubMed  Google Scholar 

  • Nelson, D.R., Sukkestad, D.R., andZaylskie, R.G. 1972. Mass spectra of methyl-branched hydrocarbons from eggs of the tobacco hornworm.J. Lipid Res. 13:413–421.

    PubMed  Google Scholar 

  • Phinney, C.S. 1993. Enhancement of molecular ion detection by variation of mass analyzer thermal energy for C10-C24 alkanes by ion trap mass spectrometry. Proceedings of the 41st American Society of Mass Spectrometry. conference on mass spectrometry and allied topics. San Francisco, California.

  • Pomonis, J.G., Fatland, C.F., Nelson, D.R., andZaylskie, R.G. 1978. Insect hydrocarbons I. Corroboration of structure by synthesis and mass spectrometry of mono- and dimethylalkanes.J. Chem. Ecol. 4:27–39.

    Google Scholar 

  • Pomonis, J.G., Nelson, D.R., andFatland, C.L. 1980. Insect hydrocarbons 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between methyl groups on fragmentation.J. Chem. Ecol. 6:965–972.

    Google Scholar 

  • Pomonis, J.G., Hakk, H., andFatland, C.L. 1989. Synthetic methyl- and dimethylalkanes Kovats indices, [13C]NMR and mass spectra of some methylpentacosanes and Z. X-dimethyl-heptacosanes.J. Chem. Ecol. 15:2319–2333.

    Google Scholar 

  • Sonnet, P.E. 1976. Synthesis of 1,5-dimethylalkanes, components of insect hydrocarbons.J. Am. Oil Chem. Soc. 53:57–59.

    PubMed  Google Scholar 

  • Spiteller, G. 1966. Massenspektrometrische Strukturanalyse Organisher Verbeindunger, Verlag Chemie, p. 91, Frankfurt.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doolittle, R.E., Proveaux, A.T., Alborn, H.T. et al. Quadrupole storage mass spectrometry of mono- and dimethylalkanes. J Chem Ecol 21, 1677–1695 (1995). https://doi.org/10.1007/BF02033669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02033669

Key Words

Navigation