Skip to main content
Log in

A KAM Theorem for Higher Dimensional Forced Nonlinear Schrödinger Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove an infinite dimensional KAM theorem. As an application, it is shown that there are many real-analytic small-amplitude linearly-stable quasi-periodic solutions for higher dimensional nonlinear Schrödinger equations with outer force

$$\begin{aligned} iu_t-\triangle u +M_\xi u+f(\bar{\omega }t)|u|^2u=0, \quad t\in {{\mathbb R}}, x\in {{\mathbb T}}^d \end{aligned}$$

where \(M_\xi \) is a real Fourier multiplier,\(f({\bar{\theta }})({\bar{\theta }}={\bar{\omega }} t)\) is real analytic and the forced frequencies \(\bar{\omega }\) are fixed Diophantine vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The norm \(\Vert \cdot \Vert _{D_\rho ( r,s), \mathcal{{O}}}\) for scalar functions is defined in (2.3). The vector function \(G: D_\rho ( r,s)\times \mathcal{O}\rightarrow {\mathbb {C}}^m\), (\(m<\infty \)) is similarly defined as \(\Vert G\Vert _{D_\rho ( r,s), \mathcal{{O}}}=\sum _{i=1}^m\Vert G_i\Vert _{D_\rho ( r,s), \mathcal{{O}}}\).

References

  1. Bambusi, D.: On long time stability in Hamiltonian perturbations of non-resonant linear PDEs. Nonlinearity 12, 823–850 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T}^{d}\) and a multiplicative potential. J. Eur. Math. Soc. 15, 229–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti, M., Bolle, P.: Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal. 5, 629–639 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Notices 11, 475–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications, Annals of Mathematics Studies 158. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

  8. Bourgain, J.: Nonlinear Schrödinger Equations, Park City Series 5. American Mathematical Society, Providence (1999)

    Google Scholar 

  9. Bourgain, J.: On diffusion in high-dimensional Hamiltonian systems and PDE. J. Anal. Math. 80, 1–35 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J., Wang, W.-M.: Quasi-periodic solutions of nonlinear random Schrödinger equations. J. Eur. Math. Soc. 10, 1–45 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 498–525 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Ann. Sc. Norm. Super. Pisa 15, 115–147 (1988)

    MathSciNet  MATH  Google Scholar 

  14. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Geng, J., Wu, J.: Real analytic quasi-periodic solutions for the derivative nonlinear Schrödinger equations. J. Math. Phys. 53, 102702 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geng, J., You, J.: A KAM Theorem for one dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 209, 1–56 (2005)

    Article  MATH  Google Scholar 

  18. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262, 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geng, J., You, J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19, 2405–2423 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Geng, J., Yi, Y.: Quasi-periodic solutions in a nonlinear Schrödinger equation. J. Differ. Equ. 233, 512–542 (2007)

    Article  MATH  Google Scholar 

  21. Geng, J., You, J.: A KAM theorem for higher dimensional nonlinear Schrödinger equation. J. Dyn. Differ. Equ. 25, 451–476 (2013)

    Article  MATH  Google Scholar 

  22. Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  23. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21, 192–205 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuksin, S.B.: Nearly integrable infinite dimensional Hamiltonian systems. In: Lecture Notes in Mathematics, vol. 1556. Springer, Berlin (1993)

  25. Kuksin, S.B., Pöschel, J.: Invariant Cantor manifolds of quasiperiodic oscillations for a nonlinear Schrödinger equation. Ann. Math. 143, 149–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helvetici 71, 269–296 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pöschel, J.: A KAM theorem for some nonlinear partial differential equations. Ann. Sc. Norm. Super. Pisa 23, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

  28. Pöschel, J.: On the construction of almost periodic solutions for a nonlinear Schrödinger equations. Ergod. Theory Dyn. Syst. 22, 1537–1549 (2002)

    Article  MATH  Google Scholar 

  29. Procesi, M., Procesi, C.: A normal form for the Schrödinger equation with analytic nonlinearities. Commun. Math. Phys. 312, 501–557 (2012)

    Article  MATH  Google Scholar 

  30. Procesi, C., Procesi, M.: A KAM algorithm for the resonant nonlinear Schrödinger equation. Adv. Math. 272, 399–470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Procesi, M., Xu, X.: Quasi–Töplitz functions in KAM theorem. SIAM J. Math. Anal. 45, 2148–2181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, W.M.: Energy supercritical nonlinear Schrödinger equations: quasiperiodic solutions. Duke Math. J. 165, 1129–1192 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Wayne, C.E.: Periodic and quasi-periodic solutions for nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, J., Qiu, Q., You, J.: A KAM theorem of degenerate infinite dimensional Hamiltonian systems (I). Sci. China Ser. A Math. 39, 372–383 (1996)

    MathSciNet  MATH  Google Scholar 

  35. Xu, J., Qiu, Q., You, J.: A KAM theorem of degenerate infinite dimensional Hamiltonian systems (II). Sci. China Ser. A Math. 39, 384–394 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Yuan, X.: Quasi-periodic solutions of completely resonant nonlinear wave equations. J. Differ. Equ. 230, 213–274 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Geng.

Additional information

This work is partially supported by NSFC Grant 11271180.

Appendix

Appendix

Lemma 7.1

$$\begin{aligned} \Vert FG\Vert _{ D_\rho (r,s),{\mathcal {O}} }\le \Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} }\Vert G\Vert _{ D_\rho (r,s),{\mathcal {O}} }. \end{aligned}$$

Proof

Since \((FG)_{kl\alpha \beta }=\sum _{k',l',\alpha ',\beta '}F_{k-k',l-l',\alpha -\alpha ',\beta -\beta '} G_{k'l'\alpha '\beta '}\), we have

$$\begin{aligned} \Vert FG\Vert _{ D_\rho (r,s),{\mathcal {O}} }= & {} \sup _{D_\rho (r,s)}\sum _{k,l,\alpha ,\beta }|(FG)_{kl\alpha \beta }|_{{\mathcal {O}}}|I^{l}||z^{\alpha }| |{\bar{z}}^{\beta }|e^{|k||\mathrm{Im}\theta |}\\\le & {} \sup _{D_\rho (r,s)} \sum _{k,l,\alpha ,\beta }\sum _{k',l',\alpha ',\beta '}|F_{k-k',l-l',\alpha -\alpha ',\beta -\beta ' }G_{k'l'\alpha '\beta '}|_{{\mathcal {O}}}|I^{l}||z^{\alpha }| |{\bar{z}}^{\beta }|e^{|k||\mathrm{Im}\theta |}\\\le & {} \Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} }\Vert G\Vert _{ D_\rho (r,s),{\mathcal {O}} } \end{aligned}$$

and the proof is finished. \(\square \)

Lemma 7.2

(Generalized Cauchy Inequalities)

$$\begin{aligned} \Vert F_{\theta }\Vert _{D_\rho (r-\sigma ,s),{\mathcal {O}}}\le & {} \frac{c}{\sigma }\Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} },\\ \Vert F_{I}\Vert _{D_\rho (r,\frac{1}{2} s),{\mathcal {O}}}\le & {} \frac{c}{s^2}\Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} }, \end{aligned}$$

and

$$\begin{aligned}&\Vert F_{z}\Vert _{D_{\rho }(r,\frac{1}{2} s),{\mathcal {O}}}\le \frac{c}{s}\Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} },\\&\Vert F_{{\bar{z}}}\Vert _{D_{\rho }(r,\frac{1}{2} s),{\mathcal {O}}}\le \frac{c}{s}\Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} }. \end{aligned}$$

Proof

We only prove the third inequality, the others can be proved similarly. Let \(w\ne 0\), then \(f(t)=F(z+tw)\) is an analytic map from the complex disc \(|t|<\frac{s}{\Vert w\Vert _\rho }\) in \({\mathbb {C}}\) into \(D_\rho (r,s)\). Hence

$$\begin{aligned} \Vert f'(0)\Vert _{D_\rho (r,\frac{1}{2} s),{\mathcal {O}}}=\Vert F_zw\Vert _{D_\rho (r,\frac{1}{2} s),{\mathcal {O}}}\le \frac{c}{s}\Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} }\cdot \Vert w\Vert _\rho , \end{aligned}$$

by the usual Cauchy inequality. Since \(w\ne 0\), so

$$\begin{aligned} \frac{\Vert F_zw\Vert _{D_\rho (r,\frac{1}{2} s),{\mathcal {O}}}}{\Vert w\Vert _\rho }\le \frac{c}{s}\Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} }, \end{aligned}$$

thus

$$\begin{aligned} \Vert F_{z}\Vert _{{D_\rho (r,\frac{1}{2} s),{\mathcal {O}}}}=\sup _{w\ne 0}\frac{\Vert F_zw\Vert _{D_\rho (r,\frac{1}{2} s),{\mathcal {O}}}}{\Vert w\Vert _\rho }\le \frac{c}{s}\Vert F\Vert _{ D_\rho (r,s),{\mathcal {O}} }. \end{aligned}$$

\(\square \)

Let \(\{\cdot ,\cdot \}\) denote the Poisson bracket of smooth functions, i.e.,

$$\begin{aligned} \{F,G\}=\left\langle \frac{\partial F}{\partial I}, \frac{\partial G}{\partial \theta }\right\rangle -\left\langle \frac{\partial F}{ \partial \theta },\frac{\partial G}{\partial I}\right\rangle +\mathrm{i}\left( \left\langle \frac{\partial F}{\partial z},\frac{\partial G}{\partial {{\bar{z}}}}\right\rangle -\left\langle \frac{\partial F}{\partial {{\bar{z}}}},\frac{\partial G}{\partial { z}}\right\rangle \right) , \end{aligned}$$

then we have the following lemma:

Lemma 7.3

If

$$\begin{aligned} \Vert X_F\Vert _{ D_\rho (r,s),{\mathcal {O}} }< \varepsilon ',\ \Vert X_G\Vert _{ D_\rho (r,s),{\mathcal {O}} }< \varepsilon '', \end{aligned}$$

then

$$\begin{aligned} \Vert X_{\{F,G\}}\Vert _{D_\rho (r-\sigma ,\eta s),{\mathcal {O}}}<c\sigma ^{-1}\eta ^{-2}\varepsilon '\varepsilon '',\ \eta \ll 1. \end{aligned}$$

In particular, if \(\eta \sim \varepsilon ^{\frac{1}{3}}\), \(\varepsilon ', \varepsilon ''\sim \varepsilon \), we have \(\Vert X_{\{F,G\}}\Vert _{D_\rho (r-\sigma ,\eta s),{\mathcal {O}}}\sim \varepsilon ^{\frac{4}{3}}\).

Proof

By Lemma 7.1 and Lemma 7.2,

$$\begin{aligned} \left\| \frac{\partial ^2F}{\partial I\partial I}\frac{\partial G}{\partial \theta }\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}s^{-2}\left\| \frac{\partial F}{\partial I}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial \theta }\right\| _{D_\rho (r,s)},\\ \left\| \frac{\partial ^2F}{\partial I\partial \theta }\frac{\partial G}{\partial \theta }\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}\left\| \frac{\partial F}{\partial I}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial \theta }\right\| _{D_\rho (r,s)},\\ \left\| \frac{\partial ^2F}{\partial I\partial z}\frac{\partial G}{\partial \theta }\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}s^{-1}\left\| \frac{\partial F}{\partial I}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial \theta }\right\| _{D_\rho (r,s)},\\ \left\| \frac{\partial ^2F}{\partial I\partial {\bar{z}}}\frac{\partial G}{\partial \theta }\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}s^{-1}\left\| \frac{\partial F}{\partial I}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial \theta }\right\| _{D_\rho (r,s)},\\ \left\| \frac{\partial ^2F}{\partial z\partial I}\frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}s^{-2}\left\| \frac{\partial F}{\partial z}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho (r,s)},\\ \left\| \frac{\partial ^2F}{\partial z\partial \theta }\frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}\left\| \frac{\partial F}{\partial z}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho (r,s)},\\ \left\| \frac{\partial ^2F}{\partial z\partial z}\frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}s^{-1}\left\| \frac{\partial F}{\partial z}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho (r,s)},\\ \left\| \frac{\partial ^2F}{\partial z\partial {\bar{z}}}\frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho \left( r-\sigma ,\frac{1}{2}s\right) }< & {} c\sigma ^{-1}s^{-1}\left\| \frac{\partial F}{\partial z}\right\| _{D_\rho (r,s)}\cdot \left\| \frac{\partial G}{\partial {\bar{z}}}\right\| _{D_\rho (r,s)}. \end{aligned}$$

The other cases can be obtained analogously, hence

$$\begin{aligned} \Vert X_{\{F,G\}}\Vert _{D_\rho (r-\sigma ,\eta s),{\mathcal {O}}}<c\sigma ^{-1}\eta ^{-2}\varepsilon '\varepsilon ''. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, S., Geng, J. A KAM Theorem for Higher Dimensional Forced Nonlinear Schrödinger Equations. J Dyn Diff Equat 30, 979–1010 (2018). https://doi.org/10.1007/s10884-017-9581-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9581-7

Keywords

Navigation