Skip to main content
Log in

Real Analytic Quasi-Periodic Solutions with More Diophantine Frequencies for Perturbed KdV Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we consider the perturbed KdV equation with Fourier multiplier

$$\begin{aligned} u_{t} =- u_{xxx} + \big (M_{\xi }u+u^3 \big )_{x},\quad u(t,x+2\pi )=u(t,x),\quad \int _0^{2\pi }u(t,x)dx=0, \end{aligned}$$

with analytic data of size \(\varepsilon \). We prove that the equation admits a Whitney smooth family of small amplitude, real analytic quasi-periodic solutions with \(\tilde{J}\) Diophantine frequencies, where the order of \(\tilde{J}\) is \(O(\frac{1}{\varepsilon })\). The proof is based on a conserved quantity \(\int _0^{2\pi } u^2 dx\), Töplitz–Lipschitz property and an abstract infinite dimensional KAM theorem. By taking advantage of the conserved quantity \(\int _0^{2\pi } u^2 dx\) and Töplitz–Lipschitz property, our normal form part is independent of angle variables in spite of the unbounded perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The norm \(\Vert \cdot \Vert _{D_\rho ( r,s), \mathcal{{O}}}\) for scalar functions is defined in (2.3). The vector function \(G: D_\rho ( r,s)\times {\mathcal{{O}}}\rightarrow {\mathbb {C}}^m\), (\(m<\infty \)) is similarly defined as \(\Vert G\Vert _{D_\rho ( r,s), \mathcal{{O}}}=\sum _{i=1}^m\Vert G_i\Vert _{D_\rho ( r,s), \mathcal{{O}}}\).

References

  1. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359, 471–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baldi, P., Berti, M., Montalto, R.: KAM for autonomous quasi-linear perturbations of KdV, preprint (2015)

  3. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219, 465–480 (2001)

    Article  MATH  Google Scholar 

  4. Berti, M., Biasco, L.: Branching of Cantor manifolds of elliptic tori and applications to PDEs. Commun. Math. Phys. 305, 741–796 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Not. 1994, 475–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Quasiperiodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematics Studies, 158. Princeton University Press, Princeton (2005)

    Book  Google Scholar 

  8. Eliasson, L.H., Kuksin, S.B.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geng, J., Hong, W.: Invariant tori of full dimension for second KdV equations with the external parameters. J. Dyn. Differ. Equ. (to appear)

  10. Geng, J., Wu, J.: Real analytic quasi-periodic solutions for the derivative nonlinear Schrödinger equations. J.Math. Phys. 53, 102702, 27 (2012)

    Article  MATH  Google Scholar 

  11. Geng, J., Yi, Y.: Quasi-periodic solutions in a nonlinear Schrödinger equation. J. Differ. Equ. 233, 512–542 (2007)

    Article  MATH  Google Scholar 

  12. Geng, J., You, J.: KAM tori of Hamiltonian perturbations of 1D linear beam equations. J. Math. Anal. Appl. 277, 104–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Geng, J., You, J.: A KAM theorem for one-dimensional Schrödinger equation with periodic boundary conditions. J. Differ. Equ. 209, 1–56 (2005)

    Article  MATH  Google Scholar 

  14. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226, 5361–5402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, G., Kuksin, S.B.: The KdV equation under periodic boundary conditions and its perturbations. Nonlinearity 27, R61–R88 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kappeler, T., Pöschel, J.: KdV & KAM. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  17. Kuksin, S.B.: Analysis of Hamiltonian PDEs. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  18. Kuksin, S.B.: Fifteen Years of KAM in PDE. Translations-American Mathematical Society. American Mathematical Society, Providence (2004)

    Book  MATH  Google Scholar 

  19. Liang, Z., You, J.: Quasi-periodic solutions for 1D Schrödinger equation with higher order nonlinearity. SIAM J. Math. Anal. 36, 1965–1990 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient. Commun. Pur. Appl. Math. 63, 1145–1172 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307, 629–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pöschel, J.: On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202(4), 559–608 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71, 269–296 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pöschel, J.: A KAM theorem for some nonlinear partial differential equations. Ann. S. C.Norm. Sup. Pisa 23, 119–148 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is partially supported by NSFC Grant 11271180. This work is also partially supported by Jiangsu Planned Projects for Postdoctoral Research Funds(1302022C) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. This work is also partially supported by China Postdoctoral Science Foundation funded project (2014M551583) and Project supported by the National Natural Science Foundation of China (Grant No. 11401302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Geng.

Appendix

Appendix

Lemma 6.5

If

$$\begin{aligned} \Vert X_F\Vert _{ D_\rho (r,s),\mathcal{{O}} }< \varepsilon ',\ \Vert X_G\Vert _{ D_\rho (r,s),\mathcal{{O}} }< \varepsilon '', \end{aligned}$$

then

$$\begin{aligned} \Vert X_{\{F,G\}}\Vert _{D_\rho (r-\sigma ,\eta s),\mathcal{{O}}}<c\sigma ^{-1}\eta ^{-2}\varepsilon '\varepsilon '',\ \eta \ll 1. \end{aligned}$$

In particular, if \(\eta \sim \varepsilon ^{\frac{1}{3}}\), \(\varepsilon ', \varepsilon ''\sim \varepsilon \), we have \(\Vert X_{\{F,G\}}\Vert _{D_\rho (r-\sigma ,\eta s),\mathcal{{O}}}\sim \varepsilon ^{\frac{4}{3}}\).

For the proof, see [13]. \(\square \)

Let V be an open domain in a real Banach space E with norm\(\Vert \cdot \Vert \), B a subset of another real Banach space, and \(X:V\times B\rightarrow E\) a parameter dependent vector field on V,  which is \(C^{1}\) on V and Lipschitz on B. Let \(\phi ^{t}\) be its flow. Suppose there is a subdomain \(U\subset V\) such that \(\phi ^{t} :U\times B\rightarrow V\) for \(-1\le t\le 1\).

Lemma 6.6

Under the preceding assumptions,

$$\begin{aligned}&\Vert \phi ^{t}-id\Vert _{U}\le \Vert X\Vert _{V}\\&\Vert \phi ^{t}-id\Vert _{U}^{\mathcal {L}}\le {\mathrm{exp}}(\Vert DX_{V}\Vert )\Vert X\Vert _{V}^{\mathcal {L}} \end{aligned}$$

For the proof, see [24]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, J., Wu, J. Real Analytic Quasi-Periodic Solutions with More Diophantine Frequencies for Perturbed KdV Equations. J Dyn Diff Equat 29, 1103–1130 (2017). https://doi.org/10.1007/s10884-016-9529-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-016-9529-3

Keywords

Navigation