Skip to main content
Log in

A KAM Theorem for Higher Dimensional Wave Equations Under Nonlocal Perturbation

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we prove an infinite dimensional KAM theorem. As an application, it is shown that there are many real-analytic small-amplitude linearly-stable quasi-periodic solutions for higher dimensional wave equation under nonlocal perturbation

$$\begin{aligned} u_{tt}-\triangle u +M_\xi u +\left( \int _{\mathbb {T}^d} u^2 dx\right) u=0,\quad t\in \mathbb {R},\ x\in \mathbb {T}^d\ \end{aligned}$$

where \(M_\xi \) is a real Fourier multiplier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The norm \(\Vert \cdot \Vert _{D( r,s), \mathcal O}\) for scalar functions is defined in (2.2). The vector function \(G: D( r,s)\times \mathcal{O}\rightarrow \mathbb {C}^m\), (\(m<\infty \)) is similarly defined as \(\Vert G\Vert _{D( r,s), \mathcal O}=\sum _{i=1}^m\Vert G_i\Vert _{D( r,s), \mathcal O}\).

  2. Here \(|\cdot |\) denotes \(\ell ^1\)-norm.

References

  1. Baldi, P.: Periodic solutions of forced Kirchhoff equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 8, 117–141 (2009)

  2. Berti, M., Bolle, P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Google Scholar 

  3. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(T^d\) with a multiplicative potential. J. Eur. Math. Soc. 15, 229–286 (2013)

    Google Scholar 

  4. Berti, M., Corsi, L., Procesi, M.: An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Commun. Math. Phys. 334(3), 1413–1454 (2015)

    Google Scholar 

  5. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Not. 11, 475–497 (1994)

    Google Scholar 

  6. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations. Ann. Math. 148, 363–439 (1998)

    Google Scholar 

  7. Bourgain, J.: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

  8. Chierchia, L., You, J.: KAM tori for 1D nonlinear wave equations with periodic boundary conditions. Commun. Math. Phys. 211, 497–525 (2000)

    Google Scholar 

  9. Corsi, L., Montalto, R.: Quasi-periodic solutions for the forced Kirchhoff equation on \(\mathbb{T}^d\). Nonlinearity 31, 5075–5109 (2018)

    Google Scholar 

  10. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Google Scholar 

  11. Eliasson, L.H., Kuksin, S.: KAM for non-linear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Google Scholar 

  12. Geng, J., You, J.: KAM tori for higher dimensional beam equations with constant potentials. Nonlinearity 19(2405–2423), 1–56 (2006)

    Google Scholar 

  13. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262, 343–372 (2006)

    Google Scholar 

  14. Kappeler, T., Pöschel, J.: KdV and KAM. Springer, Berlin (2003)

    Google Scholar 

  15. Kirchhoff, G.: Vorlesungen über mathematische Physik: Mechanik, ch. 29. Teubner, Leipzig (1876)

  16. Kuksin, S.: A KAM-theorem for equations of the Korteweg–de Vries type. Rev. Math. Math. Phys. 10(3), ii+64 (1998)

  17. Liu, J., Yuan, X.: A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307(3), 629–673 (2011)

    Google Scholar 

  18. Montalto, R.: Quasi-periodic solutions of forced Kirchhoff equation. Nonlinear Differ. Equ. Appl. NoDEA 24, 9 (2017)

    Google Scholar 

  19. Pöschel, J.: Quasi-periodic solutions for a nonlinear wave equation. Comment. Math. Helv. 71, 269–296 (1996)

    Google Scholar 

  20. Pöschel, J.: A KAM theorem for some nonlinear partial differential equations. Ann. Sc. Norm. sup. Pisa CI. sci. 23, 119–148 (1996)

Download references

Acknowledgements

The work is partially supported by NSFC Grant 11271180.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Geng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 7.1

$$\begin{aligned} \Vert FG\Vert _{ D(r,s) }\le \Vert F\Vert _{ D(r,s) }\Vert G\Vert _{ D(r,s) }. \end{aligned}$$

Proof

Since \((FG)_{kl\alpha \beta }=\sum _{k',l',\alpha ',\beta '}F_{k-k',l-l',\alpha -\alpha ',\beta -\beta '} G_{k'l'\alpha '\beta '}\), we have

$$\begin{aligned} \Vert FG\Vert _{ D(r,s) }= & {} \mathop {\mathop {\sup }\limits _{\Vert z\Vert _\rho<s}}\limits _{\Vert \bar{z}\Vert _\rho<s}\sum _{k,l,\alpha ,\beta }|(FG)_{kl\alpha \beta }|s^{2l}|z^{\alpha }| |\bar{z}^{\beta }|e^{|k|r}\\\le & {} \mathop {\mathop {\sup }\limits _{\Vert z\Vert _\rho<s}}\limits _{\Vert \bar{z}\Vert _\rho <s} \sum _{k,l,\alpha ,\beta }\sum _{k',l',\alpha ',\beta '}|F_{k-k',l-l',\alpha -\alpha ',\beta -\beta ' }G_{k'l'\alpha '\beta '}|s^{2l}|z^{\alpha }| |\bar{z}^{\beta }|e^{|k|r}\\\le & {} \Vert F\Vert _{ D(r,s) }\Vert G\Vert _{ D(r,s) } \end{aligned}$$

and the proof is finished. \(\square \)

Lemma 7.2

(Cauchy inequalities)

$$\begin{aligned}&\Vert F_{\theta }\Vert _{D(r-\sigma ,s)}\le \frac{c}{\sigma }\Vert F\Vert _{ D(r,s)},\\&\Vert F_{I}\Vert _{D(r,\frac{1}{2} s)}\le \frac{c}{s^2}\Vert F\Vert _{ D(r,s) }, \end{aligned}$$

and

$$\begin{aligned}&\Vert F_{z_n}\Vert _{D(r,\frac{1}{2} s)}\le \frac{c}{s}\Vert F\Vert _{ D(r,s) }|n|^ae^{|n|\rho },\\&\Vert F_{\bar{z}_n}\Vert _{D(r,\frac{1}{2} s)}\le \frac{c}{s}\Vert F\Vert _{ D(r,s) }|n|^ae^{|n|\rho }. \end{aligned}$$

Let \(\{\cdot ,\cdot \}\) denote the Poisson bracket of smooth functions, i.e.,

$$\begin{aligned} \{F,G\}=\left\langle \frac{\partial F}{\partial I}, \frac{\partial G}{\partial \theta }\right\rangle -\left\langle \frac{\partial F}{ \partial \theta },\frac{\partial G}{\partial I}\right\rangle +\mathrm{i}\sum _{n}\left( \frac{\partial F}{\partial z_n}\frac{\partial G}{\partial {\bar{z}_n}}- \frac{\partial F}{\partial {\bar{z}_n}}\frac{\partial G}{\partial { z_n}}\right) , \end{aligned}$$

then we have the following lemma:

Lemma 7.3

If

$$\begin{aligned} \Vert X_F\Vert _{ D(r,s) }< \varepsilon ',\ \Vert X_G\Vert _{ D(r,s) }< \varepsilon '', \end{aligned}$$

then

$$\begin{aligned} \Vert X_{\{F,G\}}\Vert _{D(r-\sigma ,\eta s)}<c\sigma ^{-1}\eta ^{-2}\varepsilon '\varepsilon '',\quad \ \eta \ll 1. \end{aligned}$$

In particular, if \(\eta \sim \varepsilon ^{\frac{1}{3}}\), \(\varepsilon ', \varepsilon ''\sim \varepsilon \), we have \(\Vert X_{\{F,G\}}\Vert _{D(r-\sigma ,\eta s)}\sim \varepsilon ^{\frac{4}{3}}\).

For the proof, see [13]. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Geng, J. A KAM Theorem for Higher Dimensional Wave Equations Under Nonlocal Perturbation. J Dyn Diff Equat 32, 419–440 (2020). https://doi.org/10.1007/s10884-019-09738-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-019-09738-1

Keywords

Navigation