Skip to main content
Log in

Spatiotemporal Patterns of a Reaction–Diffusion Substrate–Inhibition Seelig Model

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, the spatiotemporal patterns of a reaction–diffusion substrate–inhibition chemical Seelig model are considered. We first prove that this parabolic Seelig model has an invariant rectangle in the phase plane which attracts all the solutions of the model regardless of the initial values. Then, we consider the long time behaviors of the solutions in the invariant rectangle. In particular, we prove that, under suitable “lumped parameter assumption” conditions, these solutions either converge exponentially to the unique positive constant steady states or to the spatially homogeneous periodic solutions. Finally, we study the existence and non-existence of Turing patterns. To find parameter ranges where system does not exhibit Turing patterns, we use the properties of non-constant steady states, including obtaining several useful estimates. To seek the parameter ranges where system possesses Turing patterns, we use the techniques of global bifurcation theory. These two different parameter ranges are distinguished in a delicate bifurcation diagram. Moreover, numerical experiments are also presented to support and strengthen our analytical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Callahan, T.K., Knobloch, E.: Pattern formation in three-dimensional reaction–diffusion systems. Phys. D. 132, 339–362 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Castets, V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained Turing-type equilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990)

    Article  Google Scholar 

  3. Conway, E., Hoff, D., Smoller, J.: Large time behavior of solutions of systems of nonlinear reaction–diffusion equations. SIAM J. Appl. Math. 35(1), 1–16 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Kepper, P., Castets, V., Dulos, E., Boissonade, J.: Turing-type chemical patterns in the chlorite–iodide–malonic acid reaction. Phys. D. 49, 161–169 (1991)

    Article  Google Scholar 

  5. Epstein, I.R., Pojman, J.A.: An Introduction to Nonlinear Chemical Dynamics. Oxford University Press, Oxford (1998)

    Google Scholar 

  6. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs, NJ (1964)

    MATH  Google Scholar 

  7. Gambino, G., Lombardo, M.C., Sammartino, M.: Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion. Acta Appl. Math. 132(1), 283–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jang, J., Ni, W., Tang, M.: Global bifurcation and structure of Turing patterns in the 1-D Lengyel–Epstein model. J. Dyn. Differ. Equ. 16, 297–320 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jensen, O., Mosekilde, E., Borckmans, P., Dewel, G.: Computer simulations of Turing structures in the chlorite–iodide–malonic acid system. Physica Scripta 53, 243–251 (1996)

    Article  Google Scholar 

  10. Jin, J., Shi, J., Wei, J., Yi, F.: Bifurcations of patterned solutions in a diffusive Lengyel–Epstein system of CIMA chemical reaction. Rocky Mt. J. Math. 43(4), 1637–1674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Judd, S., Silber, M.: Simple and superlattice Turing patterns in reaction–diffusion systems: bifurcation, bistability, and parameter collapse. Phys. D. 136, 45–65 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lengyel, I., Epstein, I.R.: Modeling of Turing structures in the chlorite–iodide–malonic acid-starch reaction system. Science 251, 650–652 (1991)

    Article  Google Scholar 

  13. Lengyel, I., Epstein, I.R.: A chemical approach to designing Turing patterns in reaction–diffusion systems. Proc. Natl. Acad. Sci. USA 89, 3977–3979 (1992)

    Article  MATH  Google Scholar 

  14. Mimura, M., Muarry, J.: Spatial structures in a model substrate–inhibition reaction diffusion system. Z. Naturforsh. 33 C, 580–586 (1978)

    Google Scholar 

  15. Ni, W., Tang, M.: Turing patterns in the Lengyel–Epstein system for the CIMA reactions. Trans. Am. Math. Soc. 357, 3953–3969 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nishiura, Y.: Global structure of bifurcating solutions of some reaction diffusion systems. SIAM J. Math. Anal. 13(4), 555–593 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, R., Yi, F., Zhao, X.: Spatiotemporal patterns in a reaction–diffusion model with the Degn–Harrison reaction scheme. J. Differ. Equ. 254, 2465–2498 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Seelig, F.: Chemical oscillations by substrate inhibition: a parametrically universal oscillator type in homogeneous catalysis by metal complex formation. Z. Naturforsh. 31 a, 731–738 (1976)

    Google Scholar 

  19. Shi, J., Wang, X.: On global bifurcation for quasilinear elliptic systems on bounded domains. J. Differ. Equ. 246, 2788–2812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B237, 37–72 (1952)

    Article  MathSciNet  Google Scholar 

  21. Weinberger, H.F.: Invariant sets for weakly coupled parabolic and elliptic systems. Rend. Mat. 8, 295–310 (1975)

    MathSciNet  MATH  Google Scholar 

  22. Wollkind, D., Stephenson, L.: Chemical Turing pattern formation analyses: comparison of theory with experiment. SIAM J. Appl. Math. 61, 387–431 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yi, F., Wei, J., Shi, J.: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Anal. RWA. 9, 1038–1051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yi, F., Wei, J., Shi, J.: Global asymptotical behavior of the Lengyel–Epstein reaction–diffusion system. Appl. Math. Lett. 22, 52–55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogenous diffusive predator–prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

F. Yi was partially supported by National Natural Science Foundation of China (11371108), Program for New Century Excellent Talents in University from Ministry of Education (NECT-13-0755), Scientific Research Foundation for the Returned Overseas Chinese Scholars of Heilongjiang Province (LC2012C36) and (2013RFLXJ025). N. Tuncer was partially supported by NSF Grant DMS-1220342.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqi Yi.

Appendix: The Dynamics of ODEs

Appendix: The Dynamics of ODEs

In this section, we consider the local/global asymptotic stability of \((u_*,v_*)\), as well as the occurrence of stable periodic solutions of the following Ordinary Differential Equations (ODEs):

$$\begin{aligned} \displaystyle \frac{du}{dt}=\beta _1-u-\displaystyle \frac{\gamma _1uv}{1+u+v+Ku^2}=:f(u,v),\;\displaystyle \frac{dv}{dt}=\beta _2-\displaystyle \frac{\gamma _2uv}{1+u+v+Ku^2}=:g(u,v). \end{aligned}$$
(6.1)

System (6.1) has a positive equilibrium \((u_*,v_*)\), with

$$\begin{aligned} u_*:=\beta _1-\displaystyle \frac{\gamma _1}{\gamma _2}\beta _2,\;v_*:=\displaystyle \frac{\beta _2(1+u_*+Ku_*^2)}{\gamma _2u_*-\beta _2}, \end{aligned}$$
(6.2)

if and only if \(\displaystyle \frac{\beta _1}{1+\gamma _1}>\frac{\beta _2}{\gamma _2}\) holds.

The linearized operator of system (6.1) evaluated at \((u_*,v_*)\) is given by

$$\begin{aligned} J(u_*,v_*):= \left( \begin{array}{cc} -1-\gamma _1j_0 &{}-\gamma _1k_0\\ -\gamma _2j_0, &{}-\gamma _2k_0 \end{array}\right) , \end{aligned}$$
(6.3)

where

$$\begin{aligned} j_0:=\displaystyle \frac{v_*(1+v_*-Ku_*^2)}{(1+u_*+v_*+Ku_*^2)^2},\;k_0:=\displaystyle \frac{u_*(1+u_*+Ku_*^2)}{(1+u_*+v_*+Ku_*^2)^2}. \end{aligned}$$
(6.4)

Then, the characteristic equation of (6.3) is given by

$$\begin{aligned} \mu ^2+(1+\gamma _1j_0+\gamma _2k_0)\mu +\gamma _2k_0=0. \end{aligned}$$
(6.5)

Lemma 9

Suppose that \(\displaystyle \frac{\beta _1}{1+\gamma _1}>\frac{\beta _2}{\gamma _2}\) is satisfied so that \((u_*,v_*)\) is the unique positive equilibrium of (6.1). If

$$\begin{aligned} j_0>-\displaystyle \frac{1+\gamma _2k_0}{\gamma _1} \end{aligned}$$
(6.6)

holds, then \((u_*,v_*)\) is locally asymptotically stable in system (6.1). However, if

$$\begin{aligned} j_0<-\displaystyle \frac{1+\gamma _2k_0}{\gamma _1} \end{aligned}$$
(6.7)

holds, then \((u_*,v_*)\) is unstable in system (6.1), and the system (6.1) has a locally orbitally stable periodic orbit, denoted by \((p(t),q(t))\).

Proof

Suppose that (6.6) holds. Then, all the eigenvalues of (6.5) has strictly negative real parts, thus \((u_*,v_*)\) is locally asymptotically stable; While if (6.7) holds, then (6.5) has one eigenvalue with positive real parts, thus \((u_*,v_*)\) is unstable. According to Theorem 2, the solutions is bounded, then from Poincare–Bendixson theorem, we conclude the existence of a locally orbitally stable periodic orbit, denoted by \((p(t),q(t))\). \(\square \)

The next result is on the global asymptotic stability of the positive equilibrium \((u_*,v_*)\) in (6.1):

Lemma 10

Suppose that \(\displaystyle \frac{\beta _1}{1+\gamma _1}>\frac{\beta _2}{\gamma _2}\) is satisfied so that \((u_*,v_*)\) is the unique positive equilibrium of (6.1). Assume also that \(0<\beta _1+\beta _2\le 1\) holds. Then, \((u_*,v_*)\) is globally asymptotically stable in system (6.1), if

$$\begin{aligned} K\in \bigg (0,\displaystyle \frac{\gamma _2+2}{2\beta _1}\bigg ]\cup \bigg [\displaystyle \frac{\gamma _2+2}{2\beta _1}+\displaystyle \frac{\epsilon _-}{2\beta _1^2},\displaystyle \frac{\gamma _2+2}{2\beta _1}+\displaystyle \frac{\epsilon _+}{2\beta _1^2}\bigg ], \end{aligned}$$
(6.8)

where

$$\begin{aligned} \epsilon _{\pm }:=\sqrt{9(1-\beta _1-\beta _2)^2+6\beta _1(\gamma _2+2)(1-\beta _1-\beta _2)}\pm 3(1-\beta _1-\beta _2)>0. \end{aligned}$$
(6.9)

Proof

We first use the Dulac criteria to exclude the existence of periodic orbits in the first quadrant. Define \(b(u,v)=1+u+v+Ku^2\), then, we have

$$\begin{aligned} \displaystyle \frac{\partial (fb)}{\partial u}+\displaystyle \frac{\partial (gb)}{\partial v}=\mathcal {W}(u)-(\gamma _1+1)v, \end{aligned}$$
(6.10)

where \(\mathcal {W}(u):=-3Ku^2-(\gamma _2+2-2\beta _1K)u+\beta _1+\beta _2-1\).

Let \(u_\mathcal {W}\) be the symmetry axis of the function \(\mathcal {W}(u)\). Then, \(u_\mathcal {W}=\frac{1}{3}\beta _1K-\frac{1}{6}(2+\gamma _2)\). If \( K\in \big (0,\displaystyle \frac{\gamma _2+2}{2\beta _1}\big ]\) holds, we have \(u_\mathcal {W}\le 0\). Thus, \(\mathcal {W}(u)\le 0\), which indicates that under \(\partial (fb)/\partial u+\partial (gb)/\partial v<0\) in the first quadrant.

On the other hand, let \(\Delta _{\mathcal {W}}\) be the discriminant of the function \(\mathcal {W}(u)\). Then,

$$\begin{aligned} \Delta _{\mathcal {W}}=(2\beta _1K-2-\gamma _2)^2+12K(\beta _1+\beta _2-1). \end{aligned}$$
(6.11)

Suppose that \( K\in \big [\displaystyle \frac{\gamma _2+2}{2\beta _1}+\displaystyle \frac{\epsilon _-}{2\beta _1^2},\displaystyle \frac{\gamma _2+2}{2\beta _1}+\displaystyle \frac{\epsilon _+}{2\beta _1^2}\big ]\) holds. Then \(\Delta _{\mathcal {W}}\le 0\). Again, we can conclude that \(\mathcal {W}(u)\le 0\), which indicates that under \(\partial (fb)/\partial u+\partial (gb)/\partial v<0\) in the first quadrant.

So far, under (6.8) and \(0<\beta _1+\beta _2\le 1\), by Dulac criteria, system (6.1) does not have closed orbits in the first quadrant. By Theorem 2, it follows that the solution is bounded. Thus, by Poincare–Bendixson theorem, we know that \((u_*,v_*)\) is globally asymptotically stable in ODEs. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, F., Liu, S. & Tuncer, N. Spatiotemporal Patterns of a Reaction–Diffusion Substrate–Inhibition Seelig Model. J Dyn Diff Equat 29, 219–241 (2017). https://doi.org/10.1007/s10884-015-9444-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-015-9444-z

Keywords

Navigation