Skip to main content
Log in

Global Bifurcation and Structure of Turing Patterns in the 1-D Lengyel–Epstein Model

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This work continues the mathematical study started in ([13], to appear) on the analytic aspects of the Lengyel–Epstein reaction diffusion system. This system captures the crucial feature of the CIMA reaction in an open unstirred gel reactor which gave the first experimental evidence of Turing pattern in 1990. In the one dimensional case, we make a detailed description for the global bifurcation structure of the set of the non-constant steady states. The limiting behavior of the steady states is further clarified using a shadow system approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Callahan, T.K., and Knobloch, E. (1999). Pattern formation in three-dimensional reaction-diffusion systems. Phys. D 132, 339–362.

    Google Scholar 

  2. Castets, V., Dulos, E., Boissonade, J., and De Kepper, P. (1990). Experimental evidence of a sustained Turing-type equilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956.

    Google Scholar 

  3. Crandall, M., and Rabinowitz, P. (1971). Bifurcation from simple eigenvalues. J. Functional Anal. 8, 321–340.

    Google Scholar 

  4. Gierer, A., and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.

    PubMed  Google Scholar 

  5. Judd, S.L., and Silber, M. (2000). Simple and superlattice Turing patterns in reaction-diffusion systems: bifurcation, bistability, and parameter collapse. Phys. D 136, 45–65.

    Google Scholar 

  6. Keener, J.P. (1978). Activators and inhibitors in pattern formation. Stud. Appl. Math. 59, 1–23.

    Google Scholar 

  7. Lengyel, I., and Epstein, I.R. (1991). Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251, 650–652.

    Google Scholar 

  8. Lengyel, I., and Epstein, I.R. (1992). A chemical approach to designing Turing patterns in reaction-diffusion system. Proc. Natl. Acad. Sci. USA 89, 3977–3979.

    Google Scholar 

  9. Li, Y., Oslonovitch, J., Mazouz, N., Plenge, F., Krischer, K., and Ertl, G. (2001). Turing-type patterns on electrode surfaces. Science 291, 2395–2398.

    Google Scholar 

  10. Murray, J.D. (1989). Mathematical Biology, Springer-Verlag, Berlin.

    Google Scholar 

  11. Ni, W.-M. (1998). Diffusion, cross-diffusion, and their spike-layer steady states. Notices Amer. Math. Soc. 45, 9–18.

    Google Scholar 

  12. Ni, W.-M., Polčik, P., and Yanagida, E. (2001). Monotonicity of stable solutions in shadow systems. Trans. Amer. Math. Soc. 353, 5057–5069.

    Google Scholar 

  13. Ni, W.-M., and Tang, M. Turing patterns in Lengyel-Epstein system for the CIMA reaction, submitted.

  14. Ni, W.-M., Takagi, I., and Yanagida, E. (2001). Stability of least energy patterns of the shadow system for an activator-inhibitor model. Japan J. Ind. Appl. Math. 18, 259–272.

    Google Scholar 

  15. Nishiura, Y. (1982). Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Anal. 13, 555–593.

    Google Scholar 

  16. Opial, Z. (1961). Sur les périodes des solutions de 1 'équation différentielle x″ + g(x) = 0. Ann. Polon. Math. 10, 49–72.

    Google Scholar 

  17. Rabinowitz, P.H. (1971). Some global results for nonlinear eigenvalue problems. J. Functional Anal. 7, 487–513.

    Google Scholar 

  18. Schaaf, R. (1990). Global Solution Branches of Two-point Boundary Value Problems, Lecture Notes in Mathematics, Vol. 1458, Springer-Verlag, Berlin.

    Google Scholar 

  19. Shi, J. (2002). Semilinear Neumann boundary value problems on a rectangle. Trans. Amer. Math. Soc. 354, 3117–3154.

    Google Scholar 

  20. Takagi, I. (1986). Point-condensation for a reaction-diffusion system. J. Diff. Eqns 61, 208–249.

    Google Scholar 

  21. Turing, A.M. (1952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London Ser. B 237, 37–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, J., Ni, WM. & Tang, M. Global Bifurcation and Structure of Turing Patterns in the 1-D Lengyel–Epstein Model. Journal of Dynamics and Differential Equations 16, 297–320 (2004). https://doi.org/10.1007/s10884-004-2782-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-004-2782-x

Navigation