Skip to main content
Log in

Poisson-Transmission Problems for \(L^{\infty }\)-Perturbations of the Stokes System on Lipschitz Domains in Compact Riemannian Manifolds

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

The purpose of this work is to show the well-posedness in \(L^2\)-Sobolev spaces for a Poisson-transmission problem involving \(L^{\infty }\)-perturbations of the Stokes system on complementary Lipschitz domains in compact Riemannian manifolds. The technical details rely on the layer potential theory for the Stokes system and the invertibility of some perturbed zero index Fredholm operators by suitable compact operators. The compact part is provided by the \(L^{\infty }\)-perturbations of the Stokes system. An existence result for a related semilinear Poisson-transmission problem is also formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dahlberg, B., Kenig, C., Verchota, C.: Boundary value problems for the system of elastostatics on Lipschitz domains. Duke Math. J. 57, 795–818 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dindos̆, M.: Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds. Commun. Partial Differ. Equ. 27, 219–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dindos̆, M.: Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds II. Trans. Am. Math. Soc. 355, 1365–1399 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dindos̆, M.: Semilinear Poisson problems in Sobolev–Besov spaces on Lipschitz domains. Publ. Math. 46, 353–403 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dindos̆, M., Mitrea, M.: The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and \(C^1\) domains. Arch. Rational Mech. Anal. 174, 1–47 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fabes, E., Kenig, C., Verchota, G.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fitzpatrick, P., Pejsachowicz, J.: Orientation and the Leray-Schauder theory for fully nonlinear elliptic boundary value problems. Mem. Am. Math. Soc. 101, 483 (1993)

    MathSciNet  Google Scholar 

  9. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  10. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations: Variational Methods. Springer, Heidelberg (2008)

    Book  Google Scholar 

  11. Jerison, D., Kenig, C.: The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130, 161–219 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kohr, M., Lanza de Cristoforis, M., Wendland, W.L.: Nonlinear Neumann-transmission problems for Stokes and Brinkman equations on Euclidean Lipschitz domains. Potential Anal. 38, 1123–1171 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kohr M., Lanza de Cristoforis M., Wendland W.L.: Nonlinear Darcy-Forchheimer-Brinkman system with linear Robin boundary conditions in Lipschitz domains. To appear in “Complex Analysis and Potential Theory with Applications”, Proceedings of the 9th ISAAC Congress, Krakow, Poland 5–9 August, 2013, T. Aliyev, A. Golberg, and S.V. Rogosin, Eds., Cambridge Scientific Publisher, Cottenham

  14. Kohr M., Lanza de Cristoforis M., Wendland W.L.: Poisson problems for semilinear Brinkman systems on Lipschitz domains in \({\mathbb{R}}^n\)

  15. Kohr, M., Pintea, C., Wendland, W.L.: Brinkman-type operators on Riemannian manifolds: transmission problems in Lipschitz and \(C^1\) domains. Potential Anal. 32, 229–273 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kohr, M., Pintea, C., Wendland, W.L.: Layer potential analysis for pseudodifferential matrix operators in Lipschitz domains on compact Riemannian manifolds: Applications to pseudodifferential Brinkman operators. Int. Math. Res. Not. 2013(19), 4499–4588 (2013)

    MathSciNet  Google Scholar 

  17. Kohr, M., Pop, I.: Viscous Incompressible Flow for Low Reynolds Numbers. WIT Press, Southampton (2004)

    MATH  Google Scholar 

  18. Lanzani, L., Shen, Z.: On the Robin boundary condition for Laplace’s equation in Lipschitz domains. Commun. Partial Differ. Equ. 29, 91–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lawson Jr, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  20. Medková, D.: Solution of the transmission problem. Acta Appl. Math. 110, 1489–1500 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Medková D. :The transmission problem for the Stokes system. Preprint No. 5–2012, Praha (2012)

  22. Medková, D.: Integral equation method for the first and second problems of the Stokes system. Potential Anal. 39, 389–409 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mikhailov, S.E.: Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math. Anal. Appl. 378, 324–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mitrea, D., Mitrea, M., Monniaux, S.: The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Commun. Pure Appl. Anal. 7, 1295–1333 (2008)

    Article  MathSciNet  Google Scholar 

  25. Mitrea, M., Monniaux, S., Wright, M.: The Stokes operator with Neumann boundary conditions in Lipschitz domains. J. Math. Sci. 176(3), 409–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mitrea, M., Taylor, M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mitrea, M., Taylor, M.: Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem. J. Funct. Anal. 176, 1–79 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mitrea, M., Taylor, M.: Navier–Stokes equations on Lipschitz domains in Riemannian manifolds. Math. Ann. 321, 955–987 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, 241 (2012)

    Google Scholar 

  30. Taylor M.: Partial Differential Equations. Springer, New York, vols. 1–3 (1996–2000)

  31. Triebel, H.: Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers. Revista Matem\(\acute{a}\)tica Complutense, 15, 475–524 (2002)

  32. Verchota, G.: Layer potentials and regularity for the Dirichlet problem for Laplace’s operator in Lipschitz domains. J. Funct. Anal. 59, 572–611 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of Mirela Kohr and Cornel Pintea was supported by a grant of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, Project Number PN-II-ID-PCE-2011-3-0994.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirela Kohr.

Additional information

Dedicated to the memory of Klaus Kirchgässner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohr, M., Pintea, C. & Wendland, W.L. Poisson-Transmission Problems for \(L^{\infty }\)-Perturbations of the Stokes System on Lipschitz Domains in Compact Riemannian Manifolds. J Dyn Diff Equat 27, 823–839 (2015). https://doi.org/10.1007/s10884-014-9359-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9359-0

Keywords

Mathematics Subject Classification

Navigation