Skip to main content
Log in

Weighted \(L^p\)-theory for Poisson, biharmonic and Stokes problems on periodic unbounded strips of \({{\mathbb {R}}}^n\)

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

This paper establishes isomorphisms for Laplace, biharmonic and Stokes operators in weighted Sobolev spaces. The \(W^{m,p}_{\alpha }({{\mathbb {R}}}^n)\)-spaces are similar to standard Sobolev spaces \(W^{m,p}_{}({\mathbb {R}}^n)\), but they are endowed with weights \((1+|x|^2)^{\alpha /2}\) prescribing functions’ growth or decay at infinity. Although well established in \({{\mathbb {R}}}^n\) [3], these weighted results do not apply in the specific hypothesis of periodicity. This kind of problem appears when studying singularly perturbed domains (roughness, sieves, porous media, etc): when zooming on a single perturbation pattern, one often ends with a periodic problem set on an infinite strip. We present a unified framework that enables a systematic treatment of such problems in the context of periodic strips. We provide existence and uniqueness of solutions in our weighted Sobolev spaces. This gives a refined description of solution’s behavior at infinity which is of importance in the multi-scale context. The isomorphisms are valid for any relative integer m, any p in \((1,\infty )\), and any real \(\alpha \) out of a countable set of critical values for the Stokes, the biharmonic and the Laplace operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Le Tallec, P., Valentin, F., Pironneau, O.: Constructing wall laws with domain decomposition or asymptotic expansion techniques. Comput. Methods Appl. Mech. Eng. 151(1–2), 215–232 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alliot, F.: Étude des équations stationnaires de Stokes et Navier–Stokes dans des domaines extérieurs. PhD thesis, CERMICS, École des Ponts ParisTech (1998)

  3. Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \({ R}^n\). J. Math. Pures Appl. (9) 73(6), 579–606 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Amrouche, C., Girault, V., Giroire, J.: Dirichlet and Neumann exterior problems for the \(n\)-dimensional Laplace operator: an approach in weighted Sobolev spaces. J. Math. Pures Appl. (9) 76(1), 55–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amrouche, Ch., Razafison, U.: The stationary Oseen equations in \({\mathbb{R}}^3\). An approach in weighted Sobolev spaces. J. Math. Fluid Mech. 9(2), 211–225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amrouche, Ch., Razafison, U.: Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in \({\mathbb{R}}^3\). J. Math. Fluid Mech. 9(2), 181–210 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amrouche, Ch., Razafison, U.: Isotropically and anisotropically weighted Sobolev spaces for the Oseen equation. In: Advances in Mathematical Fluid Mechanics, pp. 1–24. Springer, Berlin (2010)

  8. Andersen, K.F., Mohanty, P.: Restriction and extension of Fourier multipliers between weighted \(L^p\) spaces on \({\mathbb{R}}^n\) and \({\mathbb{T}}^n\). Proc. Am. Math. Soc. 137(5), 1689–1697 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boulmezaoud, T.Z.: On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces. Math. Methods Appl. Sci. 25(5), 373–398 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boulmezaoud, T.Z.: On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26(8), 633–669 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bresch, D., Milisic, V.: High order multi-scale wall-laws, part I: the periodic case. Q. Appl. Math. 68(2), 229–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bruhat, F.: Distributions sur un groupe localement compact et applications à l’étude des représentations des groupes \(p\)-adiques. Bulletin de la Société Mathématique de France 89, 43–75 (1961)

    MathSciNet  MATH  Google Scholar 

  13. Farwig, R., Sohr, H.: Weighted \(L^q\)-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Japan 49(2), 251–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. In: Springer Monographs in Mathematics, Steady-State Problems, 2nd edn. Springer, New York (2011)

  15. Girault, V.: The gradient, divergence, curl and Stokes operators in weighted Sobolev spaces of \({{\mathbb{R}}}^3\). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 39(2), 279–307 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Girault, V.: The Stokes problem and vector potential operator in three-dimensional exterior domains: an approach in weighted Sobolev spaces. Differ. Int. Equ. 7(2), 535–570 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Giroire, J.: Étude de quelques problèmes aux limites extérieurs et résolution par équations intégrales. PhD thesis, Université Pierre et Marie Curie-ParisVI (1987)

  18. Hanouzet, B.: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)

    MathSciNet  MATH  Google Scholar 

  19. Hörmander, L.: Linear partial differential operators. Springer, Berlin (1976)

    MATH  Google Scholar 

  20. Jäger, W., Mikelić, A.: On the boundary conditions at the contact interface between a porous medium and a free fluid. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23(3), 403–465 (1996)

    MathSciNet  MATH  Google Scholar 

  21. Jäger, W., Mikelić, A.: Couette flows over a rough boundary and drag reduction. Commun. Math. Phys. 232(3), 429–455 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kyed, M.: Maximal regularity of the time-periodic linearized Navier–Stokes system. J. Math. Fluid Mech. 16(3), 523–538 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Madureira, A.L., Valentin, F.: Asymptotics of the Poisson problem in domains with curved rough boundaries. SIAM J. Math. Anal. 38(5), 1450–1473 (2006/07) (electronic)

  24. Milišić, Vuk: Very weak estimates for a rough Poisson–Dirichlet problem with natural vertical boundary conditions. Methods Appl. Anal. 16(2), 157–185 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Milišić, V.: Blood-flow modelling along and trough a braided multi-layer metallic stent. http://hal.archives-ouvertes.fr/hal-00409446/fr/submitted

  26. Miyakawa, T.: On nonstationary solutions of the Navier–Stokes equations in an exterior domain. Hiroshima Math. J. 12(1), 115–140 (1982)

    MathSciNet  MATH  Google Scholar 

  27. Neuss, N., Neuss-Radu, M., Mikelić, A.: Effective laws for the poisson equation on domains with curved oscillating boundaries. Appl. Anal. 85, 479–502 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguetseng, G.: Espaces de distributions sur des ouverts périodiques et applications. Technical Report RR-0172, INRIA (1982)

  29. Razafison, U.: Théorie \(L^p\) avec poids pour les équations d’Oseen dans des domaines non bornés. PhD thesis, Université de Pau et des Pays de l’Adour (2004)

  30. Razafison, U.: The stationary Navier–Stokes equations in 3D exterior domains. An approach in anisotropically weighted \(L^{q}\) spaces. J. Differ. Equ. 245(10), 2785–2801 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Reed, M., Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1975)

    MATH  Google Scholar 

  32. Rudin, W.: Fourier analysis on groups. In: Wiley Classics Library. Wiley, New York (1990) (Reprint of the 1962 original, A Wiley-Interscience Publication)

  33. Sauer, J.: Extrapolation theorem on locally compact abelian groups (preprint)

  34. Sauer, J.: Weighted resolvent estimates for the spatially periodic Stokes equations. Ann. Univ. Ferrara, 1–22 (2014). doi:10.1007/s11565-014-0221-4

  35. Schwartz, L.: Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entièrement corrigée, refondue et augmentée. Hermann, Paris (1966)

  36. Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143–211 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vuk Milišić.

Compactly supported distributions, \({\mathcal E}'(\hat{G})\)

Compactly supported distributions, \({\mathcal E}'(\hat{G})\)

Theorem 10

If \(u\in {\mathcal E}'(\hat{G})\) of order p, then for any test function \(\psi \in {\mathcal E}(\hat{G})\) s.t. \(D^j_{\xi ^j} \psi (\eta ) = 0\) for all points \(\eta \) in the support of u and all \(j \in \{0,\dots ,p\}\), one has \(\langle u,\psi \rangle =0\), where the brackets denote the duality in \({\mathcal E}'(\hat{G}),{\mathcal E}(\hat{G})\).

Proof

As the support of u is compact in \(\hat{G}\) there exists a finite collection of integers \(J \subset {\mathbb {N}}\) and finite sequence of compact intervals \((K(j))_{j\in J}\) s.t. \(\hbox {supp}u \in \{({\mathbf k}_j,K(j))_{j\in J}\}\), we denote the set of all \(S:=\{ ({\mathbf k}_j)_{j\in J}\}\), a finite subset of \({\varPi }_{\ell =1}^{n-1} (2\pi \) \(\mathbb {Z}/L_\ell )\). Let \(K_\epsilon (j):=\{ \zeta \in {{\mathbb {R}}}\text { s.t. }\mathrm{d}(\zeta ,K(j))\le \epsilon \}\). We define the smooth cut-off function

$$\begin{aligned} \chi _{\epsilon }({\mathbf k},\xi ) := \frac{1}{\epsilon }{\left\{ \begin{array}{ll} \int _{K_{2\epsilon }(j)} \varphi ((\xi -\zeta )/\epsilon ) \mathrm{d}\zeta &{} \text { if } {\mathbf k}\in S, \\ 0&{} \text { otherwise}, \end{array}\right. } \end{aligned}$$

where \(\varphi \in C^\infty _0({{\mathbb {R}}})\) s.t. \(\varphi \ge 0\), \(\int _{{{\mathbb {R}}}} \varphi (\xi )\mathrm{d}\xi =1\) and \(\hbox {supp}\varphi \subset B(0,1)\). Then it is clear that \( \chi _{\epsilon }({\mathbf k}_j,\cdot ) = 1\) in \(K_\epsilon (j)\) and that \(\hbox {supp}\chi _{\epsilon }({\mathbf k}_j,\cdot ) \subset K_{3\epsilon }(j)\). One has then \(\langle u,\psi \rangle =\langle u,\psi \chi _\epsilon \rangle \) since \(\psi (1-\chi _\epsilon )=0\) in a neighborhood of \(\hbox {supp}u\). Hence

$$\begin{aligned} |\langle u,\psi \rangle | \le C \sup _{\eta \in \hat{G},j \le p} \left| D^j_{\xi ^j} ( \psi \chi _\epsilon ) \right| \end{aligned}$$

which by arguments similar to Theorem 1.5.4 [19] is bounded uniformly by \(\epsilon \), and thus tends to 0, as \(\epsilon \rightarrow 0\). Indeed, for any fixed \({\mathbf k}_j\) using

$$\begin{aligned} |\psi ({\mathbf k}_j,\xi ')| \le \frac{1}{(p+1)!} \sup _{t\in (0,1)} \left| D^{p+1}_{\xi ^{p+1}} \psi ( {\mathbf k}_j,\xi + t(\xi '-\xi )) \right| |\xi '-\xi |^{(p+1)}, \end{aligned}$$

for all \(\xi \in {{\mathbb {R}}}\) and similar estimates for all derivatives of higher order, it implies that \(\sup _{\xi ' \in K_{3 \epsilon }}\) \( | D^q \psi ({\mathbf k}_j,\xi ') | \le c_{j,q} \epsilon ^{p+1-q}\). On the other hand \(\sup _{\xi \in K_{3\epsilon }(j)} |D^{q'} \chi _\epsilon ({\mathbf k}_j,\xi ) | \le c'_{j,q'} \epsilon ^{-q'}\), which together with the Leibnitz formula gives that

$$\begin{aligned} |\langle u,\psi \rangle | \le c \sup _{j \in J} \sup _{ \xi \in K_{3 \epsilon }(j) } \begin{pmatrix} p \\ q \end{pmatrix} c_{j,q}\epsilon ^{p+1-q} c'_{j,p-q} \epsilon ^{-(p-q)} \le c \epsilon . \end{aligned}$$

Theorem 11

If \(u\in {\mathcal E}'(\hat{G})\) s.t. \(\hbox {supp}u \subset \{ 0 \}\) then for any \(\varphi \in {\mathcal E}(\hat{G})\), there exists a \(p\in {\mathbb {N}}\) s.t. \( \langle u , \varphi \rangle = \sum _{r=0}^p c_{r} \partial _{\xi ^{r}}^{r} \varphi (0). \)

Proof

Let p be the order of u. Set \(\psi ({\mathbf k},\xi )= \varphi ({\mathbf k},\xi ) - \sum _{r=0}^p \partial _{\xi ^r}^r \varphi ({\mathbf k},0) \frac{\xi ^r}{r !}\) it is a smooth function s.t. any derivative in direction \(\xi \) vanishes up to order p. Since u is compactly supported, one defines \(\chi ({\mathbf k},\xi )={\mathbbm {1}}_{{\mathbf k}=0}\) which is in \(C^\infty (\hat{G})\). Applying the previous result it comes \(\langle u,\psi \rangle =\langle u,\chi \psi \rangle = 0\). Then using that u is linear, one recovers:

$$\begin{aligned} \langle u , \varphi \rangle = \left\langle u, \chi _{{\mathbf k}=0} \sum _{r=0}^p \partial _{\xi ^r}^r \varphi ({\mathbf k},0) \frac{\xi ^r}{r !}\right\rangle = \sum _{r=0}^p \left\langle u , \chi _{{\mathbf k}=0} \frac{\xi ^r}{r !}\right\rangle \partial _{\xi ^r}^r \varphi (0), \end{aligned}$$

which gives the definition of the constants \((c_r)_{r\in \{0,\dots ,p\}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milišić, V., Razafison, U. Weighted \(L^p\)-theory for Poisson, biharmonic and Stokes problems on periodic unbounded strips of \({{\mathbb {R}}}^n\) . Ann Univ Ferrara 62, 117–142 (2016). https://doi.org/10.1007/s11565-015-0230-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-015-0230-y

Keywords

Mathematics Subject Classification

Navigation