Skip to main content
Log in

Hemodynamic management of cardiovascular failure by using PCO2 venous-arterial difference

  • INVITED REVIEW
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

The difference between mixed venous blood carbon dioxide tension (PvCO2) and arterial carbon dioxide tension (PaCO2), called ∆PCO2 has been proposed to better characterize the hemodynamic status. It depends on the global carbon dioxide (CO2) production, on cardiac output and on the complex relation between CO2 tension and CO2 content. The aim of this review is to detail the physiological background allowing adequate interpretation of ∆PCO2 at the bedside. Clinical and experimental data support the use of ∆PCO2 as a valuable help in the decision-making process in patients with hemodynamic instability. The difference between central venous CO2 tension and arterial CO2 tension, which is easy to obtain can substitute for ∆PCO2 to assess the adequacy of cardiac output. Differences between local tissue CO2 tension and arterial CO2 tension can also be obtained and provide data on the adequacy of local blood flow to the local metabolic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, et al. Clinical review: update on hemodynamic monitoring-a consensus of 16. Crit Care. 2011;15:229.

    Article  PubMed  Google Scholar 

  2. Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18:585–9.

    Article  PubMed  CAS  Google Scholar 

  3. Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101:509–15.

    Article  PubMed  CAS  Google Scholar 

  4. Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007–10.

    Article  PubMed  CAS  Google Scholar 

  5. Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597–604.

    PubMed  CAS  Google Scholar 

  6. Herve P, Simonneau G, Girard P, Cerrina J, Mathieu M, Duroux P. Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat. Crit Care Med. 1985;13:537–40.

    Article  PubMed  CAS  Google Scholar 

  7. Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966;211:493–505.

    PubMed  CAS  Google Scholar 

  8. Jensen FB. Red blood cell ph, the Bohr effect, and other oxygenation-linked phenomena in blood o2 and co2 transport. Acta Physiol Scand. 2004;182:215–27.

    Article  PubMed  CAS  Google Scholar 

  9. West J. Gas transport to the periphery: how gases are moved to the peripheral tissues? In: West JB, editor. Respiratory physiology. The essentials. 4th ed. Baltimore: Williams & Wilkins; 1990. p. 69–85.

    Google Scholar 

  10. Cavaliere F, Giovannini I, Chiarla C, Conti G, Pennisi MA, Montini L, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol. 2005;146:77–83.

    Article  PubMed  CAS  Google Scholar 

  11. Jensen FB. Comparative analysis of autoxidation of haemoglobin. J Exp Biol. 2001;204:2029–33.

    PubMed  CAS  Google Scholar 

  12. Mchardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci. 1967;32:299–309.

    PubMed  CAS  Google Scholar 

  13. Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148:867–71.

    Article  PubMed  CAS  Google Scholar 

  14. Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73:576–82.

    PubMed  CAS  Google Scholar 

  15. Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med. 1998;26:979–80.

    Article  PubMed  CAS  Google Scholar 

  16. Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315:153–6.

    Article  PubMed  CAS  Google Scholar 

  17. Grundler W, Weil MH, Rackow EC. Arterio-venous carbon dioxide and pH gradients during cardiac arrest. Circulation. 1986;74:1071–4.

    Article  PubMed  CAS  Google Scholar 

  18. Adrogué HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med. 1989;320:1312–6.

    Article  PubMed  Google Scholar 

  19. Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80:269–75.

    PubMed  Google Scholar 

  20. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.

    Article  PubMed  Google Scholar 

  21. Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17:219–37.

    Article  PubMed  CAS  Google Scholar 

  22. Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med. 1991;19:1362–4.

    Article  PubMed  CAS  Google Scholar 

  23. Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30:379–84.

    Article  PubMed  Google Scholar 

  24. Dubin A, Murias G, Estenssoro E, Canales H, Badie J, Pozo M, et al. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6:514–20.

    Article  PubMed  Google Scholar 

  25. Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–21.

    PubMed  CAS  Google Scholar 

  26. Gutierrez G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med. 2004;169:525–33.

    Article  PubMed  Google Scholar 

  27. Teboul JL, Graini L, Boujdaria R, Berton C, Richard C. Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest. 1993;103:81–5.

    Article  PubMed  CAS  Google Scholar 

  28. Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.

    Article  PubMed  CAS  Google Scholar 

  29. Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. Svo2 collaborative group. N Engl J Med. 1995;333:1025–32.

    Article  PubMed  CAS  Google Scholar 

  30. Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23:545–52.

    Article  PubMed  CAS  Google Scholar 

  31. Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272–7.

    Article  PubMed  Google Scholar 

  32. Crapo RO. Arterial blood gases: quality assessment. In: Tobin MJ, editor. Principle and practice of intensive care monitoring. New York: Mc Graw-Hill; 1998. p. 107–22.

    Google Scholar 

  33. d’Ortho MP, Delclaux C, Zerah F, Herigault R, Adnot S, Harf A. Use of glass capillaries avoids the time changes in high blood PCO2 observed with plastic syringes. Chest. 2001;120:1651–4.

    Article  PubMed  Google Scholar 

  34. Richard C, Monnet X, Teboul JL. Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care. 2011;17:296–302.

    Article  PubMed  Google Scholar 

  35. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.

    Article  PubMed  Google Scholar 

  36. Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31:818–22.

    Article  PubMed  Google Scholar 

  37. Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.

    Article  PubMed  Google Scholar 

  38. Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, et al. Central venous 02 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care. 2010;14:R193.

    Article  PubMed  Google Scholar 

  39. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and veno-arterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. In revision.

  40. Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE. Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med. 2003;31:474–80.

    Article  PubMed  Google Scholar 

  41. Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, et al. Gastric intramucosal ph as a therapeutic index of tissue oxygenation in critically ill patients. Lancet. 1992;339:195–9.

    Article  PubMed  CAS  Google Scholar 

  42. Gomersall CD, Joynt GM, Freebairn RC, Hung V, Buckley TA, Oh TE. Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med. 2000;28:607–14.

    Article  PubMed  CAS  Google Scholar 

  43. Pargger H, Hampl KF, Christen P, Staender S, Scheidegger D. Gastric intramucosal pH-guided therapy in patients after elective repair of infrarenal abdominal aneurysms: is it beneficial? Intensive Care Med. 1998;24:769–76.

    Article  PubMed  CAS  Google Scholar 

  44. Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.

    Article  PubMed  CAS  Google Scholar 

  45. Duranteau J, Sitbon P, Teboul JL, Vicaut E, Anguel N, Richard C, et al. Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med. 1999;27:893–900.

    Article  PubMed  CAS  Google Scholar 

  46. Levy B, Perez P, Perny J, Thivilier C, Gerard A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39:450–5.

    Article  PubMed  CAS  Google Scholar 

  47. Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, et al. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med. 1999;27:1225–9.

    Article  PubMed  CAS  Google Scholar 

  48. Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32:516–23.

    Article  PubMed  Google Scholar 

  49. Marik PE, Bankov A. Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med. 2003;31:818–22.

    Article  PubMed  Google Scholar 

  50. Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg. 2007;105:S48–52.

    Article  PubMed  Google Scholar 

  51. Eberhard P, Gisiger PA, Gardaz JP, Spahn DR. Combining transcutaneous blood gas measurement and pulse oximetry. Anesth Analg. 2002;94:S76–80.

    PubMed  Google Scholar 

  52. Rooth G, Ewald U, Caligara F. Transcutaneous PO2 and PCO2 monitoring at 37 degrees c. Cutaneous PO2 and PCO2. Adv Exp Med Biol. 1987;220:23–32.

    PubMed  CAS  Google Scholar 

  53. Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, et al. Cutaneous ear lobe PCO2 at 37 degrees c to evaluate microperfusion in patients with septic shock. Chest. 2010;138:1062–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Louis Teboul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dres, M., Monnet, X. & Teboul, JL. Hemodynamic management of cardiovascular failure by using PCO2 venous-arterial difference. J Clin Monit Comput 26, 367–374 (2012). https://doi.org/10.1007/s10877-012-9381-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-012-9381-x

Keywords

Navigation