Skip to main content

Advertisement

Log in

Pulse pressure variation: where are we today?

  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

In the present review we will describe and discuss the physiological and technological background necessary in understanding the dynamic parameters of fluid responsiveness and how they relate to recent softwares and algorithms’ applications. We will also discuss the potential clinical applications of these parameters in the management of patients under general anesthesia and mechanical ventilation along with the potential improvements in the computational algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103:419–28. (quiz 49-5).

    Article  PubMed  Google Scholar 

  2. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–8.

    Article  CAS  PubMed  Google Scholar 

  3. Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K. Pre-ejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med. 2005;33:2534–9.

    Article  PubMed  Google Scholar 

  4. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30:1834–7.

    Article  PubMed  Google Scholar 

  5. Feissel M, Michard F, Mangin I, Ruyer O, Faller JP, Teboul JL. Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest. 2001;119:867–73.

    Article  CAS  PubMed  Google Scholar 

  6. Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med. 2007;33:993–9.

    Article  PubMed  Google Scholar 

  7. Cannesson M, Attof Y, Rosamel P, Desebbe O, Joseph P, Metton O, et al. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology. 2007;106:1105–11.

    Article  PubMed  Google Scholar 

  8. Cannesson M, Delannoy B, Morand A, Rosamel P, Attof Y, Bastien O, et al. Does the pleth variability index indicate the respiratory induced variation in the plethysmogram and arterial pressure waveforms? Anesth Analg. 2008;106:1189–94.

    Article  PubMed  Google Scholar 

  9. Cannesson M, Desebbe O. Using ventilation induced plethysmographic waveform variations to optimize patient fluid status. Curr Opin Anaesthesiol. 2008;21:772–8.

    Article  PubMed  Google Scholar 

  10. Cannesson M, Musard H, Desebbe O, Boucau C, Simon R, Hénaine R, et al. The ability of stroke volume variations obtained with Vigileo/FloTrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg. 2009;108:513–7.

    Article  PubMed  Google Scholar 

  11. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension. Anesthesiology. 1998;89:1313–21.

    Article  CAS  PubMed  Google Scholar 

  12. Solus-Biguenet H, Fleyfel M, Tavernier B, Kipnis E, Onimus J, Robin E, et al. Non-invasive prediction of fluid responsiveness during major hepatic surgery. Br J Anaesth. 2006;97:808–16.

    Article  CAS  PubMed  Google Scholar 

  13. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.

    Article  CAS  PubMed  Google Scholar 

  14. Coriat P, Vrillon M, Perel A, Baron JF, Le Bret F, Saada M, et al. A comparison of systolic blood pressure variations and echocardiographic estimates of end-diastolic left ventricular size in patients after aortic surgery. Anesth Analg. 1994;78:46–53.

    CAS  PubMed  Google Scholar 

  15. Coyle JP, Teplick RS, Long MC, Davison JK. Respiratory variations in systemic arterial pressure as an indicator of volume status. Anesthesiology. 1983;59:A53.

    Google Scholar 

  16. Aboy M, McNames J, Thong T, Phillips CR, Ellenby MS, Goldstein B. A novel algorithm to estimate the pulse pressure variation index deltaPP. IEEE Trans Biomed Eng. 2004;51:2198–203.

    Article  PubMed  Google Scholar 

  17. Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101:200–6.

    Article  CAS  PubMed  Google Scholar 

  18. Cannesson M, Slieker J, Desebbe O, Bauer C, Chiari P, Hénaine R, et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008;106:1195–2000.

    Article  PubMed  Google Scholar 

  19. Biais M, Nouette-Gaulain K, Cottenceau V, Revel P, Sztark F. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2009;101:735–7.

    Google Scholar 

  20. Reuter DA, Kirchner A, Felbinger TW, Weis FC, Kilger E, Lamm P, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003;31:1399–404.

    Article  PubMed  Google Scholar 

  21. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler JO Jr, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Buettner M, Schummer W, Huettemann E, Schenke S, van Hout N, Sakka SG. Influence of systolic-pressure-variation-guided intraoperative fluid management on organ function and oxygen transport. Br J Anaesth 2008.

  23. Kobayashi N, Ko M, Kimura T, Meguro E, Hayakawa Y, Irinoda T, et al. Perioperative monitoring of fluid responsiveness after esophageal surgery using stroke volume variations. Expert Rev Med Devices. 2008;5:311–6.

    Article  PubMed  Google Scholar 

  24. Cannesson M, Besnard C, Durand PG, Bohe J, Jacques D. Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care. 2005;9:R562–8.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cannesson M, Desebbe O, Hachemi M, Jacques D, Bastien O, Lehot JJ. Respiratory variations in pulse oximeter waveform amplitude are influenced by venous return in mechanically ventilated patients under general anaesthesia. Eur J Anaesthesiol. 2007;24:245–51.

    Article  CAS  PubMed  Google Scholar 

  26. Cannesson M, Desebbe O, Lehot JJ. Fluid responsiveness assessment using the pulse oxymeter waveform: not yet ready for prime time. Anesth Analg. 2007;104:1598–9. (author reply 9-600).

    Article  PubMed  Google Scholar 

  27. Natalini G, Rosano A, Franschetti ME, Fachetti P, Bernardini A. Variations in arterial blood pressure and photoplethysmography during mechanical ventilation. Anesth Analg. 2006;103:1182–8.

    Article  PubMed  Google Scholar 

  28. Natalini G, Rosano A, Taranto M, Faggian B, Vittorielli E, Bernardini A. Arterial versus plethysmographic dynamic indices to test responsiveness for testing fluid administration in hypotensive patients: a clinical trial. Anesth Analg. 2006;103:1478–84.

    Article  PubMed  Google Scholar 

  29. Guyton AH, Hall JE. Heart muscle: the heart as a pump and function of the heart valves. In: Elsevier S, editor. Textbook of medical physiology. 11th ed. Philadelphia: Elsevier; 2006. p. 103–15.

    Google Scholar 

  30. Boldt J, Lenz M, Kumle B, Papsdorf M. Volume replacement strategies on intensive care units: results from a postal survey. Intensive Care Med. 1998;24:147–51.

    Article  CAS  PubMed  Google Scholar 

  31. Gilbertson AA. Pulmonary artery catheterization and wedge pressure measurement in the general intensive therapy unit. Br J Anaesth. 1974;46:97–104.

    Article  CAS  PubMed  Google Scholar 

  32. Michard F, Reuter DA. Assessing cardiac preload or fluid responsiveness? It depends on the question we want to answer. Intensive Care Med. 2003;29:1396. (author reply 7).

    Article  PubMed  Google Scholar 

  33. Michard F, Ruscio L, Teboul JL. Clinical prediction of fluid responsiveness in acute circulatory failure related to sepsis. Intensive Care Med. 2001;27:1238.

    Article  CAS  PubMed  Google Scholar 

  34. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–8.

    Article  PubMed  Google Scholar 

  36. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008;134:172–8.

    Article  PubMed  Google Scholar 

  37. Muller L, Louart G, Bengler C, Fabbro-Peray P, Carr J, Ripart J, et al. The intrathoracic blood volume index as an indicator of fluid responsiveness in critically ill patients with acute circulatory failure: a comparison with central venous pressure. Anesth Analg. 2008;107:607–13.

    Article  PubMed  Google Scholar 

  38. Osman D, Ridel C, Ray P, Monnet X, Anguel N, Richard C, et al. Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med. 2007;35:64–8.

    Article  PubMed  Google Scholar 

  39. Bendjelid K, Romand JA. Fluid responsiveness in mechanically ventilated patients: a review of indices used in intensive care. Intensive Care Med. 2003;29:352–60.

    Article  PubMed  Google Scholar 

  40. Rick JJ, Burke SS. Respirator paradox. South Med J 1978;71:1376–8, 82.

    Google Scholar 

  41. Partridge BL. Use of pulse oximetry as a noninvasive indicator of intravascular volume status. J Clin Monit. 1987;3:263–8.

    CAS  PubMed  Google Scholar 

  42. Pizov R, Ya’ari Y, Perel A. The arterial pressure waveform during acute ventricular failure and synchronized external chest compression. Anesth Analg. 1989;68:150–6.

    Article  CAS  PubMed  Google Scholar 

  43. Wyffels PA, Durnez PJ, Helderweirt J, Stockman WM, De Kegel D. Ventilation-induced plethysmographic variations predict fluid responsiveness in ventilated postoperative cardiac surgery patients. Anesth Analg. 2007;105:448–52.

    Article  PubMed  Google Scholar 

  44. Aboy M, Crespo C, Austin D. An enhanced automatic algorithm for estimation of respiratory variations in arterial pulse pressure during regions of abrupt hemodynamic changes. IEEE Trans Biomed Eng. 2009;56:2537–45.

    Article  PubMed  Google Scholar 

  45. Aboy M, McNames J, Thong T, Tsunami D, Ellenby MS, Goldstein B. An automatic beat detection algorithm for pressure signals. IEEE Trans Biomed Eng. 2005;52:1662–70.

    Article  PubMed  Google Scholar 

  46. McNames J, Aboy M. Statistical modeling of cardiovascular signals and parameter estimation based on the extended Kalman filter. IEEE Trans Biomed Eng. 2008;55:119–29.

    Article  PubMed  Google Scholar 

  47. Kim S, Aboy M, McNames J. Pulse pressure variation estimation using a sequential monte carlo method. Conf Proc IEEE Eng Med Biol Soc. 2009;1:5713–6.

    Google Scholar 

  48. Hornero R, Aboy M, Gomez C, Hagg DS, Phillips CR. Complexity analysis of arterial pressure during periods of abrupt hemodynamic changes. IEEE Trans Biomed Eng. 2008;55:797–801.

    Article  PubMed  Google Scholar 

  49. De Backer D, Pinsky MR. Can one predict fluid responsiveness in spontaneously breathing patients? Intensive Care Med. 2007;33:1111–3.

    Article  PubMed  Google Scholar 

  50. Lamia B, Ochagavia A, Monnet X, Chemla D, Richard C, Teboul JL. Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity. Intensive Care Med. 2007;33:1125–32.

    Article  PubMed  Google Scholar 

  51. Coudray A, Romand JA, Treggiari M, Bendjelid K. Fluid responsiveness in spontaneously breathing patients: a review of indexes used in intensive care. Crit Care Med. 2005;33:2757–62.

    Article  PubMed  Google Scholar 

  52. Charron C, Fessenmeyer C, Cosson C, Mazoit JX, Hebert JL, Benhamou D, et al. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg. 2006;102:1511–7.

    Article  PubMed  Google Scholar 

  53. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med. 2005;31:517–23.

    Article  PubMed  Google Scholar 

  54. de Waal EE, Rex S, Kruitwagen CL, Kalkman CJ, Buhre WF. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions (R3). Crit Care Med 2009.

  55. Duperret S, Lhuillier F, Piriou V, Vivier E, Metton O, Branche P, et al. Increased intra-abdominal pressure affects respiratory variations in arterial pressure in normovolaemice and hypovolaemic mechanically ventilated pigs. Intensive Care Med. 2007;33:163–71.

    Article  PubMed  Google Scholar 

  56. Durand P, Chevret L, Essouri S, Haas V, Devictor D. Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med. 2008;34:888–94.

    Article  PubMed  Google Scholar 

  57. Payen D, Vallee F, Mari A, Richard JC, De Backer D. Can pulse pressure variations really better predict fluid responsiveness than static indices of preload in patients with acute respiratory distress syndrome? Crit Care Med. 2009;37:1178.

    Article  PubMed  Google Scholar 

  58. Huang CC, Fu JY, Hu HC, Kao KC, Chen NH, Hsieh MJ, et al. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med. 2008;36:2810–6.

    Article  PubMed  Google Scholar 

  59. Landsverk SA, Hoiseth LO, Kvandal P, Hisdal J, Skare O, Kirkeboen KA. Poor agreement between respiratory variations in pulse oximetry photoplethysmographic waveform amplitude and pulse pressure in intensive care unit patients. Anesthesiology. 2008;109:849–55.

    Article  PubMed  Google Scholar 

  60. Shelley KH, Murray WB, Chang D. Arterial-pulse oximetry loops: a new method of monitoring vascular tone. J Clin Monit. 1997;13:223–8.

    Article  CAS  PubMed  Google Scholar 

  61. Cannesson M, Desebbe O, Lehot JJ. Fluid responsiveness using non-invasive predictors during major hepatic surgery. Br J Anaesth. 2007;98:272–3. (author reply 3–4).

    Article  CAS  PubMed  Google Scholar 

  62. Cannesson M, Desebbe O, Lehot JJ. Comment on “Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients” by Feissel et al. Intensive Care Med 2007.

  63. Landsverk SA, Kvandal P, Bernjak A, Stefanovska A, Kirkeboen KA. The effects of general anesthesia on human skin microcirculation evaluated by wavelet transform. Anesth Analg. 2007;105:1012–9. (table of contents).

    Article  PubMed  Google Scholar 

  64. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology. 2008;109:723–40.

    Article  PubMed  Google Scholar 

  65. Joshi GP. Intraoperative fluid restriction improves outcome after major elective gastrointestinal surgery. Anesth Analg. 2005;101:601–5.

    Article  PubMed  Google Scholar 

  66. Jacob M, Chappell D, Hollmann MW. Current aspects of perioperative fluid handling in vascular surgery. Curr Opin Anaesthesiol. 2009;22:100–8.

    Article  PubMed  Google Scholar 

  67. Grocott MPW, Mythen MG, Gan TJ. Perioperative fluid management and clinical outcomes in adults. Anesth Analg. 2005;100:1093–106.

    Article  PubMed  Google Scholar 

  68. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315:909–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee TS. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988;94:1176–86.

    Article  CAS  PubMed  Google Scholar 

  70. Wakeling HG, McFall MR, Jenkins CS, Woods WG, Miles WF, Barclay GR, et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth. 2005;95:634–42.

    Article  CAS  PubMed  Google Scholar 

  71. Conway DH, Mayall R, Abdul-Latif MS, Gilligan S, Tackaberry C. Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia. 2002;57:845–9.

    Article  CAS  PubMed  Google Scholar 

  72. Funk DJ, Moretti EW, Gan TJ. Minimally invasive cardiac output monitoring in the perioperative setting. Anesth Analg. 2009;108:887–97.

    Article  PubMed  Google Scholar 

  73. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–6.

    Article  PubMed  Google Scholar 

  74. Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med. 2002;30:1686–92.

    Article  PubMed  Google Scholar 

  75. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennet ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care. 2005;9:R687–93.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Poeze M, Greve JW, Ramsay G. Meta-analysis of hemodynamic optimization: relationship to methodological quality. Crit Care. 2005;9:R771–9.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Goepfert MS, Reuter DA, Akyol D, Lamm P, Kilger E, Goetz AE. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Intensive Care Med. 2007;33:96–103.

    Article  PubMed  Google Scholar 

  78. Boyd O, Grounds RM, Bennet ED. A randomized clinical trial of the effects of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–707.

    Article  CAS  PubMed  Google Scholar 

  79. Lobo SM, Lobo FR, Polachini CA, Patini DS, Yamamoto AE, de Oliveira NE, Serrano P, Sanches HS, Spegiorin MA, Queiroz MM, Christiano Jr AC, Savieiro EF, Alvarez PA, Teixeira SP, Cunrath GS. Prospective, randomized trial comparing fluids and dobutamine optimization of oxygen delivery in high-risk surgical patients [ISRCTN42445141]. Crit Care 2006;10:R72.

    Google Scholar 

  80. Lobo SM, Salgado PF, Castillo VG, Borim AA, Polachini CA, Palchetti JC, et al. Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med. 2000;28:3396–404.

    Article  CAS  PubMed  Google Scholar 

  81. Forrester JS, Ganz W, Diamond G, McHugh T, Chonette DW, Swan HJ. Thermodilution cardiac output determination with a single flow-directed catheter. Am Heart J. 1972;83:306–11.

    Article  CAS  PubMed  Google Scholar 

  82. Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol. 1971;27:392–6.

    Article  CAS  PubMed  Google Scholar 

  83. Ganz W, Swan HJ. Measurement of blood flow by thermodilution. Am J Cardiol. 1972;29:241–6.

    Article  CAS  PubMed  Google Scholar 

  84. Swan HJ, Ganz W. Variability between measurements of cardiac output. Crit Care Med. 1976;4:279–80.

    Article  CAS  PubMed  Google Scholar 

  85. Harvey S, Harrison DA, Singer M, Ashcroft J, Jones CM, Elbourne D, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomised controlled trial. Lancet. 2005;366:472–7.

    Article  PubMed  Google Scholar 

  86. Yu DT, Platt R, Lanken PN, Black E, Sands KE, Schwartz JS, et al. Relationship of pulmonary artery catheter use to mortality and resource utilization in patients with severe sepsis. Crit Care Med. 2003;31:2734–41.

    Article  PubMed  Google Scholar 

  87. Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D, et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. Jama. 2003;290:2713–20.

    Article  CAS  PubMed  Google Scholar 

  88. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14.

    Article  PubMed  Google Scholar 

  89. Bonazzi M, Gentile F, Biasi GM, Migliavacca S, Esposti D, Cipolla M, et al. Impact of perioperative haemodynamic monitoring on cardiac morbidity after major vascular surgery in low risk patients. A randomised pilot trial. Eur J Vasc Endovasc Surg. 2002;23:445–51.

    Article  CAS  PubMed  Google Scholar 

  90. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA. 1996;276:889–97.

    Article  PubMed  Google Scholar 

  91. Chittock DR, Dhingra VK, Ronco JJ, Russell JA, Forrest DM, Tweeddale M, et al. Severity of illness and risk of death associated with pulmonary artery catheter use. Crit Care Med. 2004;32:911–5.

    Article  PubMed  Google Scholar 

  92. Hadian M, Pinsky MR. Functional hemodynamic monitoring. Curr Opin Crit Care. 2007;13:318–23.

    Article  PubMed  Google Scholar 

  93. Pinsky MR. Hemodynamic monitoring over the past 10 years. Crit Care. 2006;10:117.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Cannesson M, Attof Y, Rosamel P, Joseph P, Bastien O, Lehot JJ. Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements. Eur J Anaesthesiol 2007:1–8.

  95. Thierry S, Thebert D, Brocas E, Razzaghi F, Van De Louw A, Loisance D, et al. Evaluation of a new invasive continuous cardiac output monitoring system: the truCCOMS system. Intensive Care Med. 2003;29:2096–9.

    Article  PubMed  Google Scholar 

  96. Biais M, Nouette-Gaulain K, Cottenceau V, Vallet A, Cochard JF, Revel P, et al. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106:1480–6. (table of contents).

    Article  PubMed  Google Scholar 

  97. Lefrant JY, Bruelle P, Aya AG, Saissi G, Dauzat M, de La Coussaye JE, et al. Training is required to improve the reliability of esophageal Doppler to measure cardiac output in critically ill patients. Intensive Care Med. 1998;24:347–52.

    Article  CAS  PubMed  Google Scholar 

  98. Mayer J, Boldt J, Wolf MW, Lang J, Suttner S. Cardiac output derived from arterial pressure waveform analysis in patients undergoing cardiac surgery: validity of a second generation device. Anesth Analg. 2008;106:867–72. (table of contents).

    Article  PubMed  Google Scholar 

  99. Sramek BB. Thoracic electrical bioimpedance measurements of cardiac output. Crit Care Med. 1994;22:1337–9.

    Article  CAS  PubMed  Google Scholar 

  100. Fortin J, Habenbacher W, Heller A, Hacker A, Grüllenberger R, Innerhofer J, et al. Non-invasive beat-to-beat cardiac output monitoring by an imporved method of tranthoracic bioimpedance measurement. Comput Biol Med. 2006;36:1186–203.

    Google Scholar 

  101. Bendjelid K, Schutz N, Suter PM, Romand JA. Continuous cardiac output monitoring after cardiopulmonary bypass: a comparison with bolus thermodilution measurement. Intensive Care Med. 2006;32:919–22.

    Article  PubMed  Google Scholar 

  102. Fukui K, Kimberger O, Fujita Y, Kurz A, Pestel JG. Fluid management by difference in pulse pressure (dPP) keeps Pr-etCO2 within tolerable limits. Anesthesiology. 2007;102:A105.

    Google Scholar 

  103. Mayer J, Boldt J, Beschmann R, Stephan A, Suttner S. Individualized intraoperative patient optimization using uncalibrated arterial pressure waveform analysis in highr risk patients undergoing major abdominal surgery. Eur J Anaesthesiol 2009;26:3AP4-3.

    Google Scholar 

  104. Oubaha D, Poelaert J. Does stroke volume variation guided fluid management improve postoperative outcome? Eur J Anaesthesiol 2009; 26: 3AP5-2.

    Google Scholar 

  105. Sakamoto H, Harasawa K, Morimoto Y, Wakisaka H. Anesthesia management in abdominal aneurysm surgery based on stroke volume variation measured by Flo Trac/Vigileo tends to be hypovolemic. Eur J Anaesthesiol 2009; 26: 4AP5-3.

    Google Scholar 

  106. Fukui K, Markstaller K, Leibundgut D, Pestel G. Timing of intraoperative fluid management by difference in pulse pressure. Eur J Anaesthesiol 2009; 26: 4AP9-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Cannesson.

Additional information

Cannesson M, Aboy M, Hofer CK, Rehman M. Pulse pressure variation: where are we today?

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cannesson, M., Aboy, M., Hofer, C.K. et al. Pulse pressure variation: where are we today?. J Clin Monit Comput 25, 45–56 (2011). https://doi.org/10.1007/s10877-010-9229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-010-9229-1

Keywords

Navigation