Skip to main content
Log in

Synthesis, Characterization, and Catalytic Property of a Hybrid Nanoscale Polyoxoniobate

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A nanoscale polyoxoniobate based on trivalent nickel complex and Lindqvist-type cluster, [Ni(en)3]2[H2Nb6O19]·8H2O (abbreviated as NEN) (en = ethylenediamine, C2H8N2) has been synthesized and structurally characterized by elemental analyses, IR spectrum, UV–visible spectra, X-ray photoelectron spectrum (XPS), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. Structural analysis shows that NEN is an ionic compound, in which the cations are two trivalent nickel complexes [Ni(en)3]3+ and the anion is a Lindqvist-type polyoxoniobate [Nb6O19]8− cluster. Notably, NEN can catalyze the production of reactive oxygen species efficiently in aqueous solution system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. P. Kepp (2012). Chem. Rev. 112, 5193.

    CAS  PubMed  Google Scholar 

  2. Z. J. Zhou, J. B. Song, L. M. Nie, and X. Y. Chen (2016). Chem. Soc. Rev. 45, 6597.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. D. W. Jiang, D. L. Ni, Z. T. Rosenkrans, P. Huang, X. Y. Yan, and W. B. Cai (2019). Chem. Soc. Rev. 48, 368.

    Google Scholar 

  4. F. Shahidi and Y. Zhong (2010). Chem. Soc. Rev. 39, 4067.

    CAS  PubMed  Google Scholar 

  5. Y. J. Yao, H. L. Zhang, Z. Y. Wang, J. Ding, S. Q. Wang, B. Q. Huang, S. F. Ke, and C. Y. Gao (2019). J. Mater. Chem. B 7, 5019.

    CAS  PubMed  Google Scholar 

  6. L. C. Dickinson and M. C. R. Symons (1983). Chem. Soc. Rev. 12, 387.

    CAS  Google Scholar 

  7. L. H. Xu, X. H. Ji, N. Zhao, C. X. Song, F. S. Wang, and C. H. Liu (2016). Polym. Chem. 7, 1826.

    CAS  Google Scholar 

  8. P. Mishra, S. Satpati, S. K. Baral, A. Dixit, and S. C. Sabat (2016). Mol. BioSyst. 12, 3017.

    CAS  PubMed  Google Scholar 

  9. X. Ma, C. Zhang, J. A. Hua, P. T. Ma, J. P. Wang, and J. Y. Niu (2019). CrystEngComm 21, 394.

    CAS  Google Scholar 

  10. X. Ma, F. T. Zhou, H. Yue, J. A. Hua, and P. T. Ma (2019). J. Mol. Struct. 1198, 126865.

    CAS  Google Scholar 

  11. X. Ma, Q. Zhao, B. Wang, D. N. Li, Y. J. Zhou, J. A. Hua, and P. T. Ma (2020). J. Mol. Struct. 1206, 127714.

    CAS  Google Scholar 

  12. D. Y. Du, J. S. Qin, S. L. Li, Z. M. Su, and Y. Q. Lan (2014). Chem. Soc. Rev. 43, 4615.

    CAS  PubMed  Google Scholar 

  13. J. L. Huang, L. Q. Lin, D. H. Sun, H. M. Chen, D. P. Yang, and Q. B. Li (2015). Chem. Soc. Rev. 44, 6330.

    CAS  PubMed  Google Scholar 

  14. P. T. Ma, F. Hu, J. P. Wang, and J. Y. Niu (2019). Coord. Chem. Rev. 378, 281.

    CAS  Google Scholar 

  15. J. A. Hua, X. Ma, P. T. Ma, J. P. Wang, and J. Y. Niu (2013). J Clust Sci. 24, 689.

    CAS  Google Scholar 

  16. Y. F. Song and R. Tsunashima (2012). Chem. Soc. Rev. 41, 7384.

    CAS  PubMed  Google Scholar 

  17. N. Fang, Y. M. Ji, C. Y. Li, Y. Y. Wu, C. G. Ma, H. L. Liu, and M. X. Li (2017). Rsc. Adv. 7, 25325.

    CAS  Google Scholar 

  18. C. H. Gong, X. H. Zeng, C. F. Zhu, J. H. Shu, P. X. Xiao, H. Xu, L. C. Liu, J. Y. Zhang, Q. D. Zeng, and J. L. Xie (2016). Rsc. Adv. 6, 106248.

    CAS  Google Scholar 

  19. H. J. Jin, B. B. Zhou, Y. Yu, Z. F. Zhao, and Z. H. Su (2011). CrystEngComm 13, 585.

    CAS  Google Scholar 

  20. J. B. Weng, M. C. Hong, Y. C. Liang, Q. Shi, and R. Cao (2002). Dalton Trans. 3, 289.

    Google Scholar 

  21. J. X. Meng, Y. Lu, Y. G. Li, H. Fu, and E. B. Wang (2011). CrystEngComm 13, 2479.

    CAS  Google Scholar 

  22. X. X. Xu, X. Gao, T. T. Lu, X. X. Liu, and X. L. Wang (2015). J. Mater. Chem. A 3, 198.

    CAS  Google Scholar 

  23. S. L. Feng, Y. Lu, Y. X. Zhang, F. Su, X. J. Sang, L. C. Zhang, W. S. You, and Z. M. Zhu (2018). Dalton Trans. 47, 14060.

    CAS  PubMed  Google Scholar 

  24. Y. Ma, Q. Xue, S. T. Min, Y. P. Zhang, H. M. Hu, S. L. Gao, and G. L. Xue (2013). Dalton Trans. 42, 3410.

    CAS  PubMed  Google Scholar 

  25. F. Y. Li and L. Xu (2011). Dalton Trans. 40, 4024.

    CAS  PubMed  Google Scholar 

  26. H. Wu, B. Yan, R. Liang, V. Singh, P. T. Ma, J. P. Wang, and J. Y. Niu (2020). Dalton Trans. 49, 388.

    CAS  PubMed  Google Scholar 

  27. A. Banerjee, B. S. Bassil, G. V. Roschenthaler, and U. Kortz (2012). Chem. Soc. Rev. 41, 7590.

    CAS  PubMed  Google Scholar 

  28. P. Huang, C. Qin, Z. M. Su, Y. Xing, X. L. Wang, K. Z. Shao, Y. Q. Lan, and E. B. Wang (2012). J. Am. Chem. Soc. 134, 14004.

    CAS  PubMed  Google Scholar 

  29. R. P. Bontchev and M. Nyman (2006). Angew. Chem. Int. Ed. 45, 6670.

    CAS  Google Scholar 

  30. J. Y. Niu, P. T. Ma, H. Niu, J. Li, J. Zhao, Y. Song, and J. P. Wang (2007). Chem. Eur. J. 13, 8739.

    CAS  PubMed  Google Scholar 

  31. P. A. Abramov, A. T. Davletgildeeva, N. K. Moroz, N. B. Kompankov, B. Santiago-Schübel, and M. N. Sokolov (2016). Inorg. Chem. 55, 12807.

    CAS  PubMed  Google Scholar 

  32. R. Tsunashima, D. L. Long, H. N. Miras, D. Gabb, C. P. Pradeep, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 113.

    CAS  Google Scholar 

  33. L. Jin, Z. K. Zhu, Y. L. Wu, Y. J. Qi, X. X. Li, and S. T. Zheng (2017). Angew. Chem. Int. Ed. 56, 16288.

    CAS  Google Scholar 

  34. Y. L. Wu, X. X. Li, Y. J. Qi, H. Yu, L. Jin, and S. T. Zheng (2018). Angew. Chem. Int. Ed. 57, 8572.

    CAS  Google Scholar 

  35. J. Dong, J. Hu, Y. Chi, Z. Lin, B. Zou, S. Yang, C. L. Hill, and C. Hu (2017). Angew. Chem. Int. Ed. 56, 4473.

    CAS  Google Scholar 

  36. M. Nyman, F. Bonhomme, T. M. Alam, M. A. Rodriguez, B. R. Cherry, J. L. Krumhansl, T. M. Nenoff, and A. M. Sattler (2002). Science 297, 996.

    CAS  PubMed  Google Scholar 

  37. A. A. Shmakova, R. R. Shiriyazdanov, A. R. Karimova, N. B. Kompankov, P. A. Abramov, and M. N. Sokolov (2018). J. Clust. Sci. 29, 1201.

    CAS  Google Scholar 

  38. P. A. Abramov, T. P. Zemerova, and M. N. Sokolov (2017). J. Clust. Sci. 28, 725.

    CAS  Google Scholar 

  39. S. Y. Shi, D. Bai, L. Y. Chen, J. Q. Liang, Y. X. Ma, W. Jiang, J. Zhang, and X. B. Cui (2019). J. Clust. Sci. 30, 661.

    CAS  Google Scholar 

  40. Z. K. Zhu, Y. Y. Lin, H. Yu, X. X. Li, and S. T. Zheng (2019). Angew. Chem. Int. Ed. 58, 16864.

    CAS  Google Scholar 

  41. X. J. Sun, J. Zhang, X. Z. Yuan, and Z. Y. Fu (2019). CrystEngComm 21, 5563.

    CAS  Google Scholar 

  42. Y. Q. Jiao, C. Qin, H. Y. Zang, W. C. Chen, C. G. Wang, T. T. Zheng, K. Z. Shao, and Z. M. Su (2015). CrystEngComm 17, 2176.

    CAS  Google Scholar 

  43. G. Chen, P. T. Ma, J. P. Wang, and J. Y. Niu (2010). J. Coord. Chem. 63, 3753.

    CAS  Google Scholar 

  44. SAINT; Bruker AXS Inc.: Madison, WI (2007).

  45. N. E. Brese and M. O’Keeffe (1991). Acta Crystallogr. B 47, 192–197.

    Google Scholar 

  46. G. M. Sheldrick. SHEXTL-97, Programs for Crystal Structure Refinements, University of Göttingen, Germany, (1997).

  47. J. J. X. Wu, X. Y. Wang, Q. Wang, Z. P. Lou, S. R. Li, Y. Y. Zhu, L. Qin, and H. Wei (2019). Chem. Soc. Rev. 48, 1004.

    CAS  PubMed  Google Scholar 

  48. X. L. Liu, Y. Gao, R. Chandrawati, and L. Hosta-Rigau (2019). Nanoscale 11, 21046.

    CAS  PubMed  Google Scholar 

  49. Y. Chen and L. Liu (2012). Adv. Drug. Deliv. Rev. 64, 640.

    CAS  PubMed  Google Scholar 

  50. X. Ma, Y. Q. Wang, J. A. Hua, C. Y. Xu, T. Yang, J. Yuan, G. Q. Chen, Z. J. Guo, and X. Y. Wang (2020). Sci. China Chem. 63, 73.

    CAS  Google Scholar 

  51. N. Gao, H. J. Sun, K. Dong, J. S. Ren, T. C. Duan, C. Xu, and X. G. Qu (2014). Nat. Commun. 5, 3422.

    PubMed  Google Scholar 

  52. X. Ma, J. A. Hua, K. Wang, H. M. Zhang, C. L. Zhang, Y. F. He, Z. J. Guo, and X. Y. Wang (2018). Inorg. Chem. 57, 13533.

    CAS  PubMed  Google Scholar 

  53. Z. F. Yang, J. J. Shang, Y. Z. He, Y. Y. Qiao, P. T. Ma, J. Y. Niu, and J. P. Wang (2020). Inorg. Chem. 59, 1967.

    CAS  PubMed  Google Scholar 

  54. S. T. Zheng, J. Zhang, J. M. Juan, D. Q. Yuan, and G. Y. Yang (2009). Angew. Chem. Int. Ed. 48, 7176.

    CAS  Google Scholar 

  55. I. D. Brown and D. Altermatt (1985). Acta Crystallogr. Sect. B Struct. Sci. 41, 244.

    Google Scholar 

  56. A. J. Bard, I. G. Dance, P. Day, J. A. Ibers, T. Kunitake, T. J. Meyer, D. M. P. Mingos, H. W. Roesky, J. P. Sauvage, A. Simon, and F. Wudl (1999). Struct. Bond. 93, 1.

    Google Scholar 

  57. W. T. Liu and H. H. Thorp (1993). Inorg. Chem. 32, 4102.

    CAS  Google Scholar 

  58. X. Ma, P. T. Ma, D. D. Zhang, J. A. Hua, C. Zhang, T. F. Huang, J. P. Wang, and J. Y. Niu (2013). Dalton Trans. 42, 874.

    CAS  PubMed  Google Scholar 

  59. C. Streb, C. Ritchie, D. L. Long, P. Kögerler, and L. Cronin (2007). Angew. Chem. Int. Ed. 46, 7579.

    CAS  Google Scholar 

  60. J. A. Hua, Y. Tian, Y. J. Bian, Q. Zhao, Y. J. Zhou, and X. Ma (2020). SN. Appl. Sci. 2, 308.

    CAS  Google Scholar 

  61. A. Boileau, F. Capon, R. Coustel, P. Laffez, S. Barrat, and J. F. Pierson (2017). J. Phys. Chem. C 121, 21579.

    CAS  Google Scholar 

  62. Y. P. Liu, S. X. Guo, L. Ding, C. A. Ohlin, A. M. Bond, and J. Zhang (2015). ACS Appl. Mater. Inter. 7, 16632.

    CAS  Google Scholar 

  63. C. M. Flynn Jr. and G. D. Stucky (1969). Inorg. Chem. 8, 332.

    CAS  Google Scholar 

  64. J. H. Son, C. A. Ohlin, and W. H. Casey (2013). Dalton Trans. 42, 7529.

    CAS  PubMed  Google Scholar 

  65. Z. Liang, D. Zhang, H. Wang, P. Ma, Z. Yang, J. Niu, and J. Wang (2016). Dalton Trans. 45, 16173.

    CAS  PubMed  Google Scholar 

  66. X. Ma, S. Z. Li, J. A. Hua, P. T. Ma, J. P. Wang, and J. Y. Niu (2013). J Coord. Chem. 66, 725.

    CAS  Google Scholar 

  67. J. Y. Niu, J. A. Hua, X. Ma, and J. P. Wang (2012). CrystEngComm 14, 4060.

    CAS  Google Scholar 

  68. J. A. Hua, Y. J. Zhou, Y. J. Bian, Y. Tian, Q. Zhao, and X. Ma (2020). J Coord. Chem. 73, 282.

    CAS  Google Scholar 

  69. J. L. Silva, T. C. R. G. Vieira, M. P. B. Gomes, A. P. A. Bom, L. M. T. R. Lima, M. S. Freitas, D. Ishimaru, Y. Cordeiro, and D. Foguel (2010). Acc. Chem. Res. 43, 271.

    CAS  PubMed  Google Scholar 

  70. J. Fielden, J. M. Sumliner, N. Han, Y. V. Geletii, X. Xiang, D. G. Musaev, T. Lian, and C. L. Hill (2015). Chem. Sci. 6, 5531.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. J. S. Zhao, Y. Wang, J. W. Zhou, P. F. Qi, S. W. Li, K. X. Zhang, X. Feng, B. Wang, and C. W. Hu (2016). J. Mater. Chem. A 4, 7174.

    CAS  Google Scholar 

  72. Z. Xu and L. Xu (2016). Chem. Commun. 52, 1094.

    CAS  Google Scholar 

  73. P. Faller, C. Hureau, and G. La Penna (2014). Acc. Chem. Res. 47, 2252.

    CAS  PubMed  Google Scholar 

  74. P. Salgado, V. Melin, M. Albornoz, H. Mansilla, G. Vidal, and D. Contreras (2018). Appl. Catal. B Environ. 226, 93.

    CAS  Google Scholar 

  75. L. MacDonald, B. Rausch, M. D. Symes, and L. Cronin (2018). Chem. Commun. 54, 1093.

    CAS  Google Scholar 

  76. J. M. Granda, L. Donina, V. Dragone, D. L. Long, and L. Cronin (2018). Nature 559, 377.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (Grants 21573056), Shanxi Province Science Foundation for Youths (Grants 201901D211453), the Research Foundation for Advanced Talents of Shanxi Province (1800008001), the Research Foundation of Taiyuan Institute of Technology (03000352), and the Research Foundation of the Chinese State Key Laboratory of Coordination Chemistry (SKLCC1912).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Ma, Jiai Hua or Pengtao Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendix A. Supplementary material

Appendix A. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Center, CCDC reference number: 1980676 for NEN. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Bian, Y., Zhou, Y. et al. Synthesis, Characterization, and Catalytic Property of a Hybrid Nanoscale Polyoxoniobate. J Clust Sci 32, 613–620 (2021). https://doi.org/10.1007/s10876-020-01820-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01820-9

Keywords

Navigation