Skip to main content
Log in

Studies on Size Dependent Structures and Optical Properties of CdSeS Clusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The size-dependent structures and optical properties of CdSeS nanoclusters in water medium are investigated. The stability of different size-dependent CdnSemSp nanoclusters (up to n = 6) is studied using density functional theory/time-dependent density functional theory (DFT/TDDFT). The computed results for ground (S0) and excited (S1, S2, S3) states are experimentally verified through UV–Vis spectroscopy. Computed ab initio results suggest that CdSeS clusters are significantly more hyperpolarizable compared to CdX (X = S, Se, Te) clusters. Structure dependent response properties are also observed, especially for n ≥ 3. Larger hyperpolarizabilities (β and γ), charge variation and orbital analysis establish Cd4SemSp clusters, as nonlinear optically active quantum dots (QDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. I. Ekimov and A. A. Onushchenko (1984). JETP Lett.40, 1136.

    Google Scholar 

  2. A. L. Efros and A. L. Efros (1982). Soviet Physics Semiconductors-Ussr.16, 772.

    Google Scholar 

  3. L. E. Brus and L. E. Brus (1984). J. Chem. Phys.80, 4403.

    CAS  Google Scholar 

  4. D. Bera, L. Qian, T. K. Tseng, and P. H. Holloway (2010). Materials3, 2260.

    CAS  PubMed Central  Google Scholar 

  5. T. Pons and H. Mattoussi (2009). Ann. Biomed. Eng.37, 1934.

    PubMed  Google Scholar 

  6. W. C. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie (2002). Curr. Opin. Biotechnol.13, 40.

    CAS  PubMed  Google Scholar 

  7. A. P. Alivisatos (1996). J. Phys. Chem.100, 13226.

    CAS  Google Scholar 

  8. A. M. Smith and S. Nie (2004). Analyst129, 672.

    CAS  PubMed  Google Scholar 

  9. W. W. Yu, L. Qu, W. Guo, and X. Peng (2003). Chem. Mater.15, 854.

    Google Scholar 

  10. M. A. Walling, J. A. Novak, and J. R. Shepard (2009). Int. J. Mol. Sci.10, 441.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. R. D. Schaller and V. I. Klimov (2004). Phys. Rev. Lett.92, 186601.

    CAS  PubMed  Google Scholar 

  12. Y. Kobayashi, T. Udagawa, and N. Tamai (2009). Chem. Lett.38, 830.

    CAS  Google Scholar 

  13. S. H. Park, M. P. Casey, and J. Falk (1993). J. Appl. Phys.73, 8041.

    CAS  Google Scholar 

  14. X. Sun, L. Xie, W. Zhou, F. Pang, T. Wang, A. R. Kost, and Z. An (2013). Opt. express.21, 8214.

    CAS  PubMed  Google Scholar 

  15. M. Koneswaran and R. Narayanaswamy (2009). Sens. Actuat. B.139, 104–109.

    CAS  Google Scholar 

  16. L. Zhang, C. Xu, and B. Li (2009). Microchim Acta.166, 61.

    CAS  Google Scholar 

  17. F. Dong, K. Hu, H. Han, and J. Liang (2009). Microchim Acta.165, 195.

    CAS  Google Scholar 

  18. J. Gorman, D. G. Hasko, and D. A. Williams (2005). Phys. Rev. Lett.95, 090502.

    CAS  PubMed  Google Scholar 

  19. X. Lan, O. Voznyy, F. P. García de Arquer, M. Liu, J. Xu, A. H. Proppe, G. Walters, F. Fan, H. Tan, M. Liu, and Z. Yang (2016). Nano Lett.16, 4630.

    CAS  PubMed  Google Scholar 

  20. M. C. Schlamp, X. Peng, and A. P. Alivisatos (1997). J. Appl. Phys.82, 5837.

    CAS  Google Scholar 

  21. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi (2000). Science.290, 314.

    CAS  PubMed  Google Scholar 

  22. H. Duan, Y. Jiang, Y. Zhang, D. Sun, C. Liu, J. Huang, and H. Zhong (2013). Nanotechnology24, 285201.

    PubMed  Google Scholar 

  23. S. M. Liu, H. Q. Guo, Z. H. Zhang, R. Li, W. Chen, and Z. G. Wang (2000). Phys E: Low Dim. Syst. Nanostruct.8, 174.

    Google Scholar 

  24. G. R. Amiri, S. Fatahian, S. Kadavanich, and A. P. Alivisatos (1997). J. Am. Chem. Soc.119, 7019.

    Google Scholar 

  25. D. V. Talapin, R. Koeppe, S. Gotzinger, A. Kornowski, J. M. Lupton, A. L. Benson, O. J. Feldmann, and H. Weller (2003). Nano Lett.3, 1677.

    CAS  Google Scholar 

  26. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi (1997). J. Phys. Chem. B.101, 9463.

    CAS  Google Scholar 

  27. P. N. Prasad and D. J. Williams Introduction to nonlinear optical effects in molecules and polymers (Wiley, New York, 1991).

    Google Scholar 

  28. M. C. Troparevsky and J. R. Chelikowsky (2001). J. Chem. Phy.114, 943–949.

    CAS  Google Scholar 

  29. P. Karamanis, G. Maroulis, and C. Pouchan (2006). Chem. Phys.331, 19–25.

    CAS  Google Scholar 

  30. P. Karamanis, G. Maroulis, and C. Pouchan (2006). J. Chem. Phys.124, 071101.

    Google Scholar 

  31. G. L. Gutsev, M. D. Mochena, B. C. Saha, C. A. Weatherford, and P. A. Derosa (2010). J. Comput. Theor. Nanosci.7, (1), 254–263.

    CAS  Google Scholar 

  32. G. J. Ashwell, R. C. Hargreaves, C. E. Baldwin, G. S. Bahra, and C. R. Brown (1992). Nature357, 393.

    CAS  Google Scholar 

  33. L. D. Huteheson, D. Marcel, G. I. Stegeman, J. J. Burke, and C. T. Seaton (1987). Opt. Eng.13, 417.

    Google Scholar 

  34. W. Feng, T. Wei, M. Li-Na, C. Wen-Ju, Z. Gui-Lan, Z. Guo-Feng, C. Shi-Dong, and X. Wei (2008). Chin. Phys. Lett.25, 1461.

    Google Scholar 

  35. P. P. Hankare, V. M. Bhuse, K. M. Garadkar, and A. D. Jadhav (2001). Mater. Chem. Phys.71, 53.

    CAS  Google Scholar 

  36. V. Kocevski, J. Rusz, O. Eriksson, and D. D. Sarma (2015). Sci. Rep.5, 10865.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. H. J. Zhan, P. J. Zhou, Z. Y. He, and Y. Tian (2012). Eur. J. Inorg. Chem.15, 2487.

    Google Scholar 

  38. J. Ouyang, M. Vincent, D. Kingston, P. Descours, T. Boivineau, M. B. Zaman, X. Wu, and K. Yu (2009). J. Phys. Chem. C113, 5193–5200.

    CAS  Google Scholar 

  39. A. D. Becke (1993). J. Chem. Phys.98, 5648.

    CAS  Google Scholar 

  40. A. D. Becke (1997). J. Chem. Phys.107, 8554.

    CAS  Google Scholar 

  41. M. J. Frisch, et al. Gaussian 09, revision D.01 (Gaussian Inc., Wallingford CT, 2004).

    Google Scholar 

  42. C. Lee, W. Yang, and R. G. Parr (1988). Phys. Rev. B37, 785.

    CAS  Google Scholar 

  43. I. S. K. Kerkines, I. D. Petsalakis, and G. Theodorakopoulos (2011). J. Phys. Chem. A115, 834.

    CAS  PubMed  Google Scholar 

  44. P. Seal, S. Sen, and S. Chakrabarti (2010). Chem. Phys.367, 152.

    CAS  Google Scholar 

  45. Y. Jin, Y. Tian, X. Kuang, X. C. Zhang, C. Lu, J. Wang, J. Lv, L. Ding, and M. Ju (2015). J. Phys. Chem. A119, 6738–6745.

    CAS  PubMed  Google Scholar 

  46. M. Ju, J. Lv, X. Y. Kuang, L. P. Ding, C. Lu, J. J. Wang, Y. Y. Jin, and G. Maroulis (2015). RSC Adv.5, 6560–6570.

    CAS  Google Scholar 

  47. X. Xing, A. Hermann, X. Kuang, M. Ju, C. Lu, Y. Jin, Y. Y. Jin, and G. Maroulis (2016). Sci. Rep.6, 19656.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Carlotto, M. Sambi, M. Rancan, and M. Casarin (2018). Inorg. Chem.57, (4), 1859–1869.

    CAS  PubMed  Google Scholar 

  49. X. X. Xia, A. Hermann, X. Y. Kuang, Y. Y. Jin, C. Lu, and X. D. Xing (2015). J. Phys. Chem. C120, 677–684.

    Google Scholar 

  50. H. Häkkinen and U. Landman (2000). Phys. Rev. B62, 2287.

    Google Scholar 

  51. M. A. Hayat Colloidal gold: principles, methods, and applications (Elsevier, New York, 2012).

    Google Scholar 

  52. S. Sabyasachi, P. Seal, and S. Chakrabarti (2010). J. Cluster Sci.21, 591.

    Google Scholar 

  53. Y. Cui, Z. Lou, X. Wang, S. Yu, and M. Yang (2015). Chem. Phys.17, 9222.

    CAS  Google Scholar 

  54. Y. Jin, G. Maroulis, X. Kuang, L. Ding, C. Lu, J. Wang, J. Lv, C. Zhang, and M. Ju (2015). Phys. Chem. Chem. Phys.17, 13590–13597.

    CAS  PubMed  Google Scholar 

  55. W. G. Sun, J. J. Wang, C. Lu, X. X. Xia, X. Y. Kuang, and A. Hermann (2017). Inorg. Chem.56, 1241–1248.

    CAS  PubMed  Google Scholar 

  56. M. Ali, D. K. Maity, D. Das, and T. Mukherjee (2006). J. Chem. Phys.124, 024325.

    Google Scholar 

  57. M. Jiang, Q. Zeng, T. Zhang, M. Yang, and K. A. Jackson (2012). J. Chem. Phys.136, 104501.

    PubMed  Google Scholar 

  58. T. Pazhanivel, D. Nataraj, V. P. Devarajan, V. Mageshwari, K. Senthil, and D. Soundararajan (2013). Anal. Methods5, 910.

    CAS  Google Scholar 

  59. A. Puzder, A. J. Williamson, N. Zaitseva, G. Galli, L. Manna, and A. P. Alivisatos (2004). Nano Lett.4, 2361.

    CAS  Google Scholar 

  60. A. E. Kuznetsov, D. Balamurugan, S. S. Skourti, and D. N. Beratan (2012). J. Phys. Chem. C.116, 6817.

    CAS  Google Scholar 

  61. R. Jose, N. U. Zhanpeisov, H. Fukumura, Y. Baba, and M. Ishikawa (2006). J. Am. Chem. Soc.128, 629.

    CAS  PubMed  Google Scholar 

  62. L. Spanhel, M. Haase, H. Weller, and A. Henglein (1987). J. Am. Chem. Soc.109, 5649.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papia Chowdhury.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2093 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, M., Chowdhury, P. Studies on Size Dependent Structures and Optical Properties of CdSeS Clusters. J Clust Sci 31, 1111–1121 (2020). https://doi.org/10.1007/s10876-019-01719-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01719-0

Keywords

Navigation