Skip to main content
Log in

Effect of Annealing Temperature on the Structural and Optical Properties of CdS/PVA Nanostructure Thin Films Using Dip Coating Method

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The cadmium sulfide/polyvinyl alcohol (CdS/PVA) nanocomposite thin films were prepared on a glass substrate by dip coating method. The prepared samples were annealed at 323, 373 and 423 K, respectively, and one sample was prepared without annealing and all the nanostructured thin films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy, energy-dispersive analysis of X-ray diffraction (EDAX), UV–Vis spectrophotometer (UV–Vis), photoluminescence (PL) spectra and Fourier transform infrared spectrophotometer (FTIR). The XRD result reveals hexagonal structure of nanocomposites with a different grain size. The SEM images indicated that the both films were homogeneous with smooth surface, but among this samples the annealed sample 373 K is given better result. The elemental compositions of the both as-prepared and annealed CdS/PVA nanocomposites were analyzed by EDAX. The effect of quantum confinement and the shifts in optical bandgap were calculated from the PL spectra and UV–Vis spectra. From the shift in optical bandgap, the sizes of the particles were calculated. FTIR analysis clearly showed the formation of polymer matrix grown CdS/PVA thin films. The CdS/PVA thin film annealed at 373 K was found to be more appropriate to window layer in solar cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Nanda, S. Sapra, D. D. Sarma, N. Chandrasekharan, and G. Hodes (2000). Chem. Mater. 12, 1018.

    Article  CAS  Google Scholar 

  2. Z. A. Peng and X. J. Peng (2001). J. Am. Chem. Soc. 123, 183.

    Article  CAS  PubMed  Google Scholar 

  3. H. J. Koo, Nanoscience and Technology Series (McGraw Hill, USA, 2006).

    Google Scholar 

  4. H. F. Al-Taay, M. A. Mahdi, D. Parlevliet, Z. Hassan, and P. K. Jennings (2014). Superlattices Microstruct. 68, 90.

    Article  CAS  Google Scholar 

  5. J. Britt and C. Ferekids (1993). Appl. Phys. Lett. 62, 2851.

    Article  CAS  Google Scholar 

  6. B. Ullrich, D. M. Bangall, H. Sakai, and Y. Segawa (2000). J. Lumin. 87, 1162.

    Article  Google Scholar 

  7. B. Su and K. L. Choy (2000). Thin Solid Films 359, 160.

    Article  CAS  Google Scholar 

  8. S. Rengaraj, A. Ferancora, S. H. Jee, S. Vengataraj, Y. Kim, J. Labuda, and M. Sillanpaa (2010). Electrochim. Acta 56, 501.

    Article  CAS  Google Scholar 

  9. W. I. Danakar, I. E. Lyons, and G. C. Morris (1985). Sol. Energy Mater. Sol. Cells 12, 137.

    Article  Google Scholar 

  10. L. Arunraja, P. Thirumoorthy, A. Karthik, R. Subramanian, and V. Rajendran (2017). J. Mater. Sci. Mater. Electron. 28, 18133.

    Article  CAS  Google Scholar 

  11. L. Arunraja, P. Thirumoorthy, A. Karthik, V. Rajendran, and L. Edwinpaul (2016). J. Electron. Mater. 45, 4100.

    Article  CAS  Google Scholar 

  12. K. Senthil, D. Mangalaraj, and S. K. Narayandass (2001). Appl. Surf. Sci. 169, 476.

    Article  Google Scholar 

  13. Y. Kanemitsu, T. Nagai, and T. Kushida (2003). Appl. Phys. Lett. 82, 388.

    Article  CAS  Google Scholar 

  14. D. Saika, P. K. Seikia, P. K. Gogri, M. R. Das, P. Sengupta, and M. V. Shelke (2011). Mater. Chem. Phys. 131, 223.

    Article  CAS  Google Scholar 

  15. H. Chen, W. Li, H. Liu, and L. Zhu (2010). Sol. Energy 84, 1201.

    Article  CAS  Google Scholar 

  16. P. M. Bandaranayake, P. V. Jayaweera, and K. Tennakone (2003). Sol. Energy Mater. Sol. Cells 76, 57.

    Article  CAS  Google Scholar 

  17. P. K. Kanna, R. R. Gokhale, V. V. V. S. Subbarao, N. Singh, K. W. Jun, and B. K. Das (2005). Mater. Chem. Phys. 94, 454.

    Article  CAS  Google Scholar 

  18. J. Lee, E. Cates, and A. Bianconi (1994). J. Am. Chem. Soc. 116, 4738.

    Article  Google Scholar 

  19. Y. Wang, G. Meng, L. Zhang, C. Liang, and J. Zhang (2002). Chem. Mater. 14, 1773.

    Article  CAS  Google Scholar 

  20. X. Yuan (2011). Polym. Bull. 67, 1758.

    Article  CAS  Google Scholar 

  21. S. B. Aziz, M. Rasheed, S. R. Saeed, and O. G. Abdullah (2017). Int. J. Electrochem. Sci. 12, 3263.

    Article  CAS  Google Scholar 

  22. R. Devi, P. Purkayastha, P. K. Kalita, and B. K. Sarma (2007). Bull. Mater. Sci. 30, 123.

    Article  CAS  Google Scholar 

  23. S. Gandhi, P. Abiramipriya, N. Pooja, J. J. L. Jeyakumari, A. Y. Arasi, V. Dhanalakshmi, M. R. G. Nair, and R. Anbarasan (2011). J. Non-Cryst. Solids 357, 181.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Management and Principal of K. S. Rangasamy College of Arts and Science College (Autonomous), Tiruchengode, Tamilnadu, India for providing facilities to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Dhatchinamurthy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhatchinamurthy, L., Thirumoorthy, P., Arunraja, L. et al. Effect of Annealing Temperature on the Structural and Optical Properties of CdS/PVA Nanostructure Thin Films Using Dip Coating Method. J Clust Sci 30, 827–835 (2019). https://doi.org/10.1007/s10876-019-01544-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01544-5

Keywords

Navigation