Skip to main content
Log in

Optical and electrical properties of polyvinyl alcohol doped CdS nanoparticles prepared by sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In-situ technique is used to generate cadmium sulfide nanoparticles in PVA matrix. The as-prepared films are characterized by X-ray diffraction, transmission electron microscopy, ultraviolet–visible absorption, Fourier transform infrared spectroscopy and photoluminescence measurements. Temperature dependence dark conductivity measurements are made on as-deposited PVA:n-CdS nanocomposites films in order to identify the conduction mechanism. The conduction in PVA:n-CdS nanocomposites films is temperature activated process having single activation energy. Steady state photo-conductivity and transient photoconductivity measurements with intensity are done in different temperature range. The measurement shows that PVA doped CdS is good candidate for photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.N. Kadam, R.S. Dhabbe, M.R. Kokate, K.M. Garadkar, J. Mater. Sci.: Mater. Electron. 25, 1887 (2014)

    Google Scholar 

  2. M. Bedir, M. Öztaş, H. Kara, J. Mater. Sci.: Mater. Electron. 24, 499 (2013)

    Google Scholar 

  3. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, J. Alloys Compd. 513, 118 (2012)

    Article  Google Scholar 

  4. Y. Li, W. Chen, S. Chen, B. Lou, M.A. Ali, F. Al-Hemaid, Colloid Surf. B 113, 85 (2014)

    Article  Google Scholar 

  5. R. Bhattacharya, T.K. Das, S. Saha, J. Mater. Sci.: Mater. Electron. 25, 754 (2014)

    Google Scholar 

  6. P.A. Chate, S.S. Patil, J.S. Patil, D.J. Sathe, P.P. Hankare, Phys. B 411, 118 (2013)

    Article  Google Scholar 

  7. B. Pant, H.R. Pant, N.A.M. Barakat, M. Park, T. Han, B.H. Lim, H. Kim, Ceram. Int. 40, 1553 (2014)

    Article  Google Scholar 

  8. S.L. Hake, P.A. Chate, D.J. Sathe, P.P. Hankare, V.M. Bhuse, J. Mater. Sci.: Mater. Electron. 25, 811 (2014)

    Google Scholar 

  9. E. Maier, A. Fischereder, W. Haas, G. Mauthner, J. Albering, T. Rath, F. Hofer, E.J.W. List, G. Trimmel, Thin Solid Films 519, 4201 (2011)

    Article  Google Scholar 

  10. T.P. Nguyen, Surf. Coat. Technol. 206, 742 (2011)

    Article  Google Scholar 

  11. N. Tessler, D.J. Pinner, P.K.H. Ho, Opt. Mater. 17, 155 (2001)

    Article  Google Scholar 

  12. S.H. Mousavi, M.H. Jilavi, T.S. Müller, P.W. de Oliveira, J. Mater. Sci.: Mater. Electron. 25, 2786 (2014)

    Google Scholar 

  13. S.Y. Lu, M.-L. Wu, H.-L. Chen, J. Appl. Phys. 93, 5789 (2003)

    Article  Google Scholar 

  14. G. Sasikala, P. Thilakan, C. Subramanium, Sol. Energy Mater. Sol. Cells 62, 275 (2000)

    Article  Google Scholar 

  15. S.A. Mahmoud, A.A. Ibrahim, A.S. Raid, Thin Solid Films 372, 144 (2000)

    Article  Google Scholar 

  16. S.J.C. Irvine, D.A. Lamb, V. Barrioz, A.J. Clayton, W.S.M. Brooks, S. Rugen-Hankey, G. Kartopu, Thin Solid Films 520, 1167 (2011)

    Article  Google Scholar 

  17. A. Romeo, D.L. Batzner, H. Zoog, C. Vignali, A.N. Tiwari, Sol. Energy Mater. Sol. Cells 67, 311 (2001)

    Article  Google Scholar 

  18. H. Zhao, E.P. Douglas, Chem. Mater. 14, 1418 (2003)

    Article  Google Scholar 

  19. B. Liu, H. Li, C.H. Chew, W. Que, Y.L. Lam, C.H. Kam, L.M. Gan, G.Q. Xu, Mater. Lett. 51, 461 (2001)

    Article  Google Scholar 

  20. J.Y. Kim, H.M. Kim, D.H. Shin, K.J. Ihn, Macromol. Chem. Phys. 207, 925 (2006)

    Article  Google Scholar 

  21. S.R. Forrest, Org. Electron. 4, 45 (2003)

    Article  Google Scholar 

  22. P.L. Burn, S.-C. Lo, I.D.W. Samuel, Adv. Mater. 19, 1675 (2007)

    Article  Google Scholar 

  23. S. Konwer, J. Maiti, S.K. Dolui, Mater. Chem. Phys. 128, 283 (2011)

    Article  Google Scholar 

  24. R.P. Chahal, S. Mahendia, A. Tomar, S. Kumar, J. Alloy. Compd. 538, 212 (2012)

    Article  Google Scholar 

  25. G.V. Kumar, R. Chandramani, Acta Phys. Pol., A 117, 917 (2010)

    Google Scholar 

  26. R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, G.N. Kumar, Appl. Phys. A 87, 797 (2007)

    Article  Google Scholar 

  27. A.S. Khomane, Mater. Res. Bull. 46, 1600 (2011)

    Article  Google Scholar 

  28. R.B. Kale, C.D. Lokhande, Appl. Surf. Sci. 223, 343 (2004)

    Article  Google Scholar 

  29. H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Thin Solid Films 516, 7306 (2008)

    Article  Google Scholar 

  30. JCPDS file card 10-454

  31. D.H. Williams, I. Fleming, Spectroscopic methods in organic chemistry, 5th edn. (Tata McGraw-Hill, New Delhi, 2004), p. 57

    Google Scholar 

  32. J. Tauc, A. Menth, J. Non-Cryst. Solids 8, 569 (1972)

    Article  Google Scholar 

  33. J.O. Winter, N. Gomez, S. Gatzert, C.E. Schmid, B.A. Korgel, Colloids Surf. A Phys. Eng. Asp. 254, 147 (2005)

    Article  Google Scholar 

  34. H. Wang, P. Fang, Z. Chen, S. Wang, J. Alloys Compd. 461, 418 (2008)

    Article  Google Scholar 

  35. D. Saikia, P.K. Saikia, P.K. Gogoi, M.R. Das, P. Sengupta, M.V. Shelke, Mater. Chem. Phys. 131, 223 (2011)

    Article  Google Scholar 

  36. A. Henglein, Chem. Rev. 89, 1861 (1989)

    Article  Google Scholar 

  37. P.K. Khanna, R.R. Gokhale, V.V.V.S. Subbarao, N. Singh, K.W. Jun, B.K. Das, Mater. Chem. Phys. 94, 454 (2005)

    Article  Google Scholar 

  38. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Appl. Phys. Lett. 78, 2285 (2001)

    Article  Google Scholar 

  39. X.L. Wu, J.Y. Fan, T. Qiu, X. Yang, G.G. Siu, P.K. Chu, Phys. Rev. Lett. 94, 026102 (2005)

    Article  Google Scholar 

  40. F. El-Tantawy, K.M. Abdel-Kader, F. Kaneko, Y.K. Sung, Eur. Phys. J. 40, 415 (2004)

    Article  Google Scholar 

  41. S.K. Mishra, R.K. Srivastava, S.G. Prakash, R.S. Yadav, A.C. Panday, Electron. Mater. Lett. 7, 31 (2011)

    Article  Google Scholar 

  42. R. Seoudi, A.A. Shabaka, M. Kamal, E.M. Abdelrazek, W. Eisa, Physica E 45, 47 (2012)

    Article  Google Scholar 

  43. A. Kariper, E. Guneria, F. Gode, C. Gumus, T. Ozpozan, Mater. Chem. Phys. 129, 183 (2011)

    Article  Google Scholar 

  44. C. Guillen, M.A. Martõnez, J. Herrero, Thin Solid Films 335, 37 (1998)

    Article  Google Scholar 

  45. N. Kim, S. Ryu, H. Noh, W. Lee, Mater. Sci. Semicond. Process. 15, 125 (2012)

    Article  Google Scholar 

  46. J. Lee, J. Yia, K. Yang, J. Park, R. Oh, Thin Solid Films 431, 344 (2003)

    Article  Google Scholar 

  47. D.M. Meysing, J.M. Burst, W.L. Rance, M.O. Reese, T.M. Barnes, T.A. Gessert, C.A. Wolden, Sol. Energy Mater. Sol. Cells 117, 300 (2013)

    Article  Google Scholar 

  48. J.W. Orton, B.J. Goldsmith, J.A. Chapman, M.J. Powell, J. Appl. Phys. 53, 1602 (1982)

    Article  Google Scholar 

  49. K.K. Singh, M. Kar, H.L. Das, Indian J. Pure Appl. Phys. 48, 110 (2010)

    Google Scholar 

  50. L.V. Garcia, M.I. Mendivil, G. Guillen, J.A.A. Martinez, B. Krishnan, D. Avellaneda, G.A. Castillo, T.K. Das, R.S. Shaji, Appl. Surf. Sci. (2014). doi:10.1016/j.apsusc.2014.12.122

    Google Scholar 

  51. A. Rose, Concepts in the photoconductivity and allied problems (Interscience, New York, 1963)

    Google Scholar 

  52. W. Park, Trans. Electr. Electron. Mater. 12, 164 (2011)

    Article  Google Scholar 

  53. W. Fuhs, D. Meyer, Phys. Status Solidi A 24, 275 (1974)

    Article  Google Scholar 

  54. A.S. Mann, D.R. Goyal, A. Kumar, Rev. Phys. Appl. 24, 613 (1989)

    Article  Google Scholar 

  55. R. Devi, P. Purkayastha, P.K. Kalita, R. Sarma, H.L. Das, B.K. Sarma, Indian J. Pure Appl. Phys. 45, 624 (2007)

    Google Scholar 

  56. S.M.H. Al-Jawad, Iran. J. Appl. Phys. 5, 29 (2009)

    Google Scholar 

Download references

Acknowledgments

This work is financially supported by UGC (Major Research Project), N. Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Tripathi, S.K. Optical and electrical properties of polyvinyl alcohol doped CdS nanoparticles prepared by sol–gel method. J Mater Sci: Mater Electron 26, 2760–2768 (2015). https://doi.org/10.1007/s10854-015-2756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2756-2

Keywords

Navigation