Skip to main content
Log in

Investigation of Sarin Nerve Agent Adsorption Behavior on BN Nanostructures: DFT Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The adsorption behavior and electronic response of BN nanosheet, nanotube, and nanocage to sarin gas, a nerve agent, were studied using density functional theory calculations. The adsorption energy is increased by increasing the BN nanostructure curvature, and it is about − 0.5, − 1.6, and − 3.4 kcal/mol for BN sheet, tube, and cage, respectively. The BN sheet and tube are insensitive to sarin gas. Although the BN cage is sensitive, it suffers from a weak interaction, and low adsorption capacity. To overcome this problem the BN cage is doped with different impurity atoms including, Sc, Al, Si, and C. The Sc and Al dopings significantly increase the reactivity of BN cage to sarin but the sensitivity is not increased sensibly. The Si and C dopings make the BN cage more reactive and sensitive to sarin gas. The C-doped BN nanocage may be a promising sensor because of its higher sensitivity, compared to the Si-doped one. After the sarin adsorption on the C-doped BN cage, its gap decreases by about 64.0% which exponentially increases the electrical conductivity, creating an electrical signal. Also, the recovery time is about 7.9 × 1015, 1.4 × 1023, 0.004, and 0.013 s for Sc, Al, Si, and C-doped BN cages, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Mandal, B. Mondal, and A. K. Das (2010). J. Phys. Chem. A 114, 10717–10725.

    Article  CAS  PubMed  Google Scholar 

  2. R. Dawson (1994). J. Appl. Toxicol. 14, 317–331.

    Article  CAS  PubMed  Google Scholar 

  3. Y.-C. Yang (1999). Acc. Chem. Res. 32, 109–115.

    Article  CAS  Google Scholar 

  4. S. Kim, B. Cho, and H. Sohn (2012). Nanoscale Res. Lett. 7, 1–5.

    Article  Google Scholar 

  5. J. C. Ordaz, E. C. Anota, M. S. Villanueva, and M. Castro (2017). New J. Chem. 41, 8045–8052.

    Article  Google Scholar 

  6. A. A. Peyghan, M. B. Tabar, and S. Yourdkhani (2013). J. Clust. Sci. 24, 1–10.

    Article  CAS  Google Scholar 

  7. R. B. dos Santos, F. de Brito Mota, R. Rivelino, A. Kakanakova-Georgieva, and G. K. Gueorguiev (2016). Nanotechnology 27, 145601–145609.

    Article  CAS  PubMed  Google Scholar 

  8. M. T. Baei, A. A. Peyghan, and Z. Bagheri (2013). J. Clust. Sci. 24, 1–10.

    Article  CAS  Google Scholar 

  9. A. A. Peyghan, M. T. Baei, S. Hashemian, and P. Torabi (2013). J. Mol. Model. 19, 859–870.

    Article  CAS  PubMed  Google Scholar 

  10. A. A. Peyghan, M. T. Baei, and S. Hashemian (2013). J. Clust. Sci. 24, 341–347.

    Article  CAS  Google Scholar 

  11. S. Meena and S. Choudhary (2017). Phys. Lett. A 381, 3431–3439.

    Article  CAS  Google Scholar 

  12. A. A. Peyghan, M. T. Baei, S. Hashemian, and P. Torabi (2013). J. Clust. Sci. 24, 1–14.

    Article  CAS  Google Scholar 

  13. H. Salimi, A. A. Peyghan, and M. Noei (2015). J. Clust. Sci. 26, 609–621.

    Article  CAS  Google Scholar 

  14. M. T. Baei, A. A. Peyghan, and Z. Bagheri (2012). C. R. Chim. 16, 122–128.

    Article  CAS  Google Scholar 

  15. M. Moradi, A. A. Peyghan, and Z. Bagheri (2013). Synth. Met. 177, 94–99.

    Article  CAS  Google Scholar 

  16. M. Pashangpour and A. A. Peyghan (2015). J. Mol. Model. 21, 116.

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Peyghan, S. A. Aslanzadeh, and M. Noei (2014). Phys. B 443, 54–59.

    Article  CAS  Google Scholar 

  18. C. Kyle, D. K. Rashmi, K. Mikhail, and K. M. Sanjeev (2006). Nanotechnology 17, 4123–4126.

    Article  CAS  Google Scholar 

  19. D. Sánchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Ordejón (1999). Phys. Rev. B 59, 12678–12683.

    Article  Google Scholar 

  20. E. C. Anota, A. B. Hernández, A. E. Morales, and M. Castro (2017). J. Mol. Graph. Model. 74, 135–142.

    Article  CAS  PubMed  Google Scholar 

  21. A. Soltani, A. Ahmadi Peyghan, and Z. Bagheri (2013). Physica E 48, 176–180.

    Article  CAS  Google Scholar 

  22. E. Chigo Anota, M. Salazar Villanueva, D. García Toral, L. Tepech Carrillo, and M. R. Melchor Martínez (2016). Superlattices Microstruct. 89, 319–328.

    Article  CAS  Google Scholar 

  23. M. T. Baei, Z. Bagheri, and A. A. Peyghan (2013). Struct. Chem. 24, 1039–1044.

    Article  CAS  Google Scholar 

  24. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, and B. I. Yakobson (2010). Nano Lett. 10, 3209–3215.

    Article  CAS  PubMed  Google Scholar 

  25. M. Samadizadeh, A. A. Peyghan, and S. F. Rastegar (2015). Chin. Chem. Lett. 26, 1042–1045.

    Article  CAS  Google Scholar 

  26. J. Beheshtian, H. Soleymanabadi, A. A. Peyghan, and Z. Bagheri (2012). Appl. Surf. Sci. 268, 436–441.

    Article  CAS  Google Scholar 

  27. M. Eslami, V. Vahabi, and A. A. Peyghan (2016). Physica E 76, 6–11.

    Article  CAS  Google Scholar 

  28. J. Beheshtian, A. A. Peyghan, and Z. Bagheri (2012). Sens. Actuators B Chem. 171-172, 846–852.

    Article  CAS  Google Scholar 

  29. Y.-X. Yu (2014). J. Mater. Chem. A 2, 8910–8917.

    Article  CAS  Google Scholar 

  30. A. A. Peyghan, M. Noei, and S. Yourdkhani (2013). Superlattices Microstruct. 59, 115–122.

    Article  CAS  Google Scholar 

  31. T. Oku, M. Kuno, H. Kitahara, and I. Narita (2001). Int. J. Inorg. Mater. 3, 597–612.

    Article  CAS  Google Scholar 

  32. T. Oku, A. Nishiwaki, and I. Narita (2004). Sci. Technol. Adv. Mater. 5, 635–638.

    Article  CAS  Google Scholar 

  33. J. Beheshtian, A. A. Peyghan, Z. Bagheri, and M. Kamfiroozi (2012). Struct. Chem. 23, 1567–1572.

    Article  CAS  Google Scholar 

  34. S. H. Lim, J. Luo, W. Ji, and J. Lin (2007). Catal. Today 120, 346–350.

    Article  CAS  Google Scholar 

  35. C. Zhi, Y. Bando, C. Tang, and D. Golberg (2010). Mater. Sci. Eng. R 70, 92–111.

    Article  CAS  Google Scholar 

  36. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery (1993). J. Comput. Chem. 14, 1347–1363.

    Article  CAS  Google Scholar 

  37. M. Najafi (2017). Vacuum 135, 18–21.

    Article  CAS  Google Scholar 

  38. A. Ahmadi, J. Beheshtian, and M. Kamfiroozi (2012). J. Mol. Model. 18, 1729–1734.

    Article  CAS  PubMed  Google Scholar 

  39. J. T. Grant, C. A. Carrero, F. Goeltl, J. Venegas, P. Mueller, S. P. Burt, S. E. Specht, W. P. McDermott, A. Chieregato, and I. Hermans (2016). Science 354, 1570–1573.

    Article  CAS  PubMed  Google Scholar 

  40. R. Gholizadeh and Y.-X. Yu (2014). J. Phys. Chem. C 118, 28274–28282.

    Article  CAS  Google Scholar 

  41. M. Noei (2016). Vacuum 131, 194–200.

    Article  CAS  Google Scholar 

  42. W. Zhou, J. Zhou, J. Shen, C. Ouyang, and S. Shi (2012). J. Phys. Chem. Solids 73, 245–251.

    Article  CAS  Google Scholar 

  43. N. O’Boyle, A. Tenderholt, and K. Langner (2008). J. Comput. Chem. 29, 839–845.

    Article  CAS  PubMed  Google Scholar 

  44. S. F. Boys and F. Bernardi (1970). Mol. Phys. 19, 553–561.

    Article  CAS  Google Scholar 

  45. A. Ahmadi Peyghan, N. Hadipour, and Z. Bagheri (2013). J. Phys. Chem. C 117, 2427–2432.

    Article  CAS  Google Scholar 

  46. E. Vessally, S. Soleimani-Amiri, A. Hosseinian, L. Edjlali, and A. Bekhradnia (2017). Physica E 87, 308–311.

    Article  CAS  Google Scholar 

  47. A. A. Peyghan and M. Noei (2013). J. Mol. Model. 19, 3941–3946.

    Article  CAS  PubMed  Google Scholar 

  48. K. Watanabe, T. Taniguchi, and H. Kanda (2004). Nat. Mater. 3, 404–409.

    Article  CAS  PubMed  Google Scholar 

  49. L. Safari, E. Vessally, A. Bekhradnia, A. Hosseinian, and L. Edjlali (2017). Thin Solid Films 623, 157–163.

    Article  CAS  Google Scholar 

  50. C. Zhi, Y. Bando, C. Tang, and D. Golberg (2010). Mater. Sci. Eng. R Rep. 70, 92–111.

    Article  CAS  Google Scholar 

  51. M. Solimannejad, S. Kamalinahad, and E. Shakerzadeh (2016). Phys. Chem. Res. 4, 315–332.

    Google Scholar 

  52. X.-M. Li, W. Q. Tian, Q. Dong, X.-R. Huang, C.-C. Sun, and L. Jiang (2011). Comput. Theor. Chem. 964, 199–206.

    Article  CAS  Google Scholar 

  53. A. Bahrami, S. Seidi, T. Baheri, and M. Aghamohammadi (2013). Superlattices Microstruct. 64, 265–273.

    Article  CAS  Google Scholar 

  54. M. T. Baei, S. Hashemian, and S. Yourdkhani (2013). Superlattices Microstruct. 60, 437–442.

    Article  CAS  Google Scholar 

  55. F. Zhao, Y. Wang, M. Zhu, and L. Kang (2015). RSC Adv. 5, 56348–56355.

    Article  CAS  Google Scholar 

  56. H. Wang, T. Maiyalagan, and X. Wang (2012). Acs Catal. 2, 781–794.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Soleymanabadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirkhani, R., Omidi, M.H., Abdollahi, R. et al. Investigation of Sarin Nerve Agent Adsorption Behavior on BN Nanostructures: DFT Study. J Clust Sci 29, 757–765 (2018). https://doi.org/10.1007/s10876-018-1398-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1398-y

Keywords

Navigation