Skip to main content
Log in

Chloropicrin sensor based on the pristine BN nanocones: DFT studies

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We investigated the chloropicrin adsorption on the BN nanocones using DFT calculations. We selected two kinds of BN nanocones with 180̊ disclination angle entailing BN-N (including N-N bonds) and BN-B (including N-N bonds). The chloropicrin strongly interacts with B-B bonds of the BN-B nanocone so that the adsorption energy is about − 135.3 kcal/mol. By going away from the apex, the reactivity of B-B bonds is decreased. The electronic properties of BN-B nanocone are not affected, and also, its recovery is impossible because of a cycloaddition process. Thus, it cannot be used in the chloropicrin sensors. In contrary, the BN-N nanocone adsorbs the chloropicrin with adsorption energy about − 11.0 kcal/mol. However, the reactivity of the BN-N is considerably lower than the BN-B. By the adsorption of the chloropicrin, the LUMO level of BN-N nanocone significantly stabilized so that the HOMO-LUMO gap is decreased by about 84.1%. Consequently, the BN-nanocone converts from a semiconductor to a semimetal with a higher electrical conductivity. The change of electrical conductivity can create an electrical signal which helps to detect the chloropicrin. We predicted a short recovery time of 3.7 × 10−5 s at 298 K for this sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ibekwe AM, Papiernik SK, Gan J, Yates SR, Yang C-H, Crowley DE (2001) Impact of fumigants on soil microbial communities. Appl Environ Microbiol 67:3245–3257

    Article  CAS  Google Scholar 

  2. Lee B-H, Annis PC, Choi W-S (2004) Fumigant toxicity of essential oils from the Myrtaceae family and 1, 8-cineole against 3 major stored-grain insects. J Stored Prod Res 40:553–564

    Article  CAS  Google Scholar 

  3. Duniway J (2002) Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology 92:1337–1343

    Article  CAS  Google Scholar 

  4. Szinicz L (2005) History of chemical and biological warfare agents. Toxicology 214:167–181

    Article  CAS  Google Scholar 

  5. Sparks SE, Quistad GB, Casida JE (1997) Chloropicrin: reactions with biological thiols and metabolism in mice. Chem Res Toxicol 10:1001–1007

    Article  CAS  Google Scholar 

  6. Safari L, Vessally E, Bekhradnia A, Hosseinian A, Edjlali L (2017) A DFT study on the sensitivity of two-dimensional BN nanosheet to nerve agents cyclosarin and tabun. Thin Solid Films 623:157–163

    Article  CAS  Google Scholar 

  7. Siadati SA, Vessally E, Hosseinian A, Edjlali L (2016) Possibility of sensing, adsorbing, and destructing the Tabun-2D-skeletal (Tabun nerve agent) by C20 fullerene and its boron and nitrogen doped derivatives. Synthetic Met 220:606–611

    Article  CAS  Google Scholar 

  8. Selala M, Janssens J, Jorens PG, Bossaert L, Beaucourt L, Schepens P (1989) An improperly labeled container with chloropicrin: a farmer’s nightmare. Bull Environ Contam Toxicol 42:202–208

    Article  CAS  Google Scholar 

  9. Vessally E, Behmagham F, Massoumi B, Hosseinian A, Edjlal L (2016) Carbon nanocone as an electronic sensor for HCl gas: Quantum chemical analysis. Vacuum 134:40–47

    Article  CAS  Google Scholar 

  10. Bogue R (2008) Nanosensors: a review of recent progress. Sens Rev 28:12–17

    Article  Google Scholar 

  11. Bashiri S, Vessally E, Bekhradnia A, Hosseinian A, Edjlal L (2017) Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies. Vacuum 136:156–162

    Article  CAS  Google Scholar 

  12. Vessally E, Siadati SA, Hosseinian A, Edjlal L (2017) Selective sensing of ozone and the chemically active gaseous species of the troposphere by using the C20 fullerene and graphene segment. Talanta 162:505–510

    Article  CAS  Google Scholar 

  13. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Open and capped (5, 5) armchair SWCNTs: a comparative study of DFT-based reactivity descriptors. Chem Phys Lett 541:85–91

    Article  CAS  Google Scholar 

  14. Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlal L, Bekhradnia A (2017) The Hartree-Fock exchange effect on the CO adsorption by the boron nitride nanocage. Physica E 87:308-311

    Article  CAS  Google Scholar 

  15. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) Surface reactivity for chlorination on chlorinated (5, 5) armchair SWCNT: a computational approach. J Phys Chem C 116(42):22399–22410

    Article  CAS  Google Scholar 

  16. Hosseinian A, Asadi Z, Edjlal L, Bekhradnia A, Vessally E (2017) NO2 sensing properties of a borazine doped nanographene: a DFT study. Comput Theor Chem 1106:36–42

    Article  CAS  Google Scholar 

  17. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2013) DFT-based reactivity study of (5, 5) armchair boron nitride nanotube (BNNT). Chem Phys Lett 565:69–73

    Article  CAS  Google Scholar 

  18. Vessally E, Esrafili MD, Nurazar R, Nematollahi P, Bekhradnia A (2016) A DFT study on electronic and optical properties of aspirin-functionalized B12N12 fullerene-like nanocluster. Struct Chem 28(2017):735-748

    Google Scholar 

  19. Peyghan AA, Yourdkhani S (2014) Capture of carbon dioxide by a nanosized tube of BeO: a DFT study. Struct Chem 25(2):419–426

    Article  CAS  Google Scholar 

  20. Samadizadeh M, Rastegar SF, Peyghan AA (2015) The electronic response of nano-sized tube of BeO to CO molecule: a density functional study. Struct Chem 26(3):809–814

    Article  CAS  Google Scholar 

  21. Moradi M, Peyghan AA (2014) Role of sodium decoration on the methane storage properties of BC3 nanosheet. Struct Chem 25(4):1083–1090

    Article  CAS  Google Scholar 

  22. Golberg D, Bando Y, Tang C, Zhi C (2007) Boron nitride nanotubes. Adv Mater 19:2413–2432

    Article  CAS  Google Scholar 

  23. Beheshtian J, Peyghan AA, Bagheri Z (2013) Formaldehyde adsorption on the interior and exterior surfaces of CN nanotubes. Struct Chem 24(4):1331–1337

    Article  CAS  Google Scholar 

  24. Cao C, Long MQ, Zhang XJ, Mao XC (2015) Giant magnetoresistance and spin-filtering effects in zigzag graphene and hexagonal boron nitride based heterojunction. Phys Lett A 379:1527–1531

    Article  CAS  Google Scholar 

  25. Esrafili MD, Nurazar R (2015) Metal-free decomposition of formic acid on pristine and carbon-doped boron nitride fullerene: a DFT study. J Clust Sci 26(2):595–608

    Article  CAS  Google Scholar 

  26. Anota EC, Cocoletzi GH, Ramírez JFS, Hernández AB (2014) Detection of paracetamol by armchair BN nanotubes: a molecular study. Struct Chem 25(3):895–901

    Article  CAS  Google Scholar 

  27. Weng Q, Wang X, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012

    Article  CAS  Google Scholar 

  28. Chopra NG, Luyken R, Cherrey K, Crespi VH (1995) Boron nitride nanotubes. Science 269:966–1000

    Article  CAS  Google Scholar 

  29. Kim KK, Hsu A, Jia X, Kim SM, Shi Y, Hofmann M, Nezich D, Rodriguez-Nieva JF, Dresselhaus M, Palacios T (2011) Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett 12:161–166

    Article  Google Scholar 

  30. Vessally E, Soleimani-Amiri S, Hosseinian A, Edjlali L, Bekhradnia A (2017) A comparative computational study on the BN ring doped nanographenes. Appl Surf Sci 396:740-745

    Article  CAS  Google Scholar 

  31. Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D (2010) “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett 10:5049–5055

    Article  CAS  Google Scholar 

  32. Yin B, Wang G, Sa N, Huang Y (2008) Bonding analysis and stability on alternant B16N16 cage and its dimers. J Mol Model 14:789–795

    Article  CAS  Google Scholar 

  33. Jensen F, Toftlund H (1993) Structure and stability of C24 and B12N12 isomers. Chem Phys Lett 201:89–96

    Article  CAS  Google Scholar 

  34. Wu H-S, Cui X-Y, Qin X-F, Trout DL, Jiao H (2006) Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes. J Mol Model 12:537–542

    Article  CAS  Google Scholar 

  35. Iijima S, Ichihashi T, Ando Y (1992) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356:776

    Article  CAS  Google Scholar 

  36. Ge M, Sattler K (1994) Bundles of carbon nanotubes generated by vapor-phase growth. Appl Phys Lett 64:710–711

    Article  CAS  Google Scholar 

  37. Ge M, Sattler K (1994) Observation of fullerene cones. Chem Phys Lett 220:192–196

    Article  CAS  Google Scholar 

  38. Rubio A, Corkill JL, Cohen ML (1994) Theory of graphitic boron nitride nanotubes. Phys Rev B 49:5081

    Article  CAS  Google Scholar 

  39. Bourgeois L, Bando Y, Shinozaki S, Kurashima K, Sato T (1999) Boron nitride cones: structure determination by transmission electron microscopy. Acta Crystallogr A: Found Crystallogr 55:168–177

    Article  CAS  Google Scholar 

  40. Bourgeois L, Bando Y, Han W, Sato T (2000) Structure of boron nitride nanoscale cones: ordered stacking of 240 and 300 disclinations. Phys Rev B 61:7686

    Article  CAS  Google Scholar 

  41. Omidvar A, Mohajeri A (2015) Decorated graphyne and its boron nitride analogue as versatile nanomaterials for CO detection. Mol Phys 113:3900–3908

    Article  CAS  Google Scholar 

  42. Samadizadeh M, Peyghan AA, Rastegar SF (2015) Sensing behavior of BN nanosheet toward nitrous oxide: a DFT study. Chin Chem Lett 26:1042–1045

    Article  CAS  Google Scholar 

  43. Behmagham F, Vessally E, Massoumi B, Hosseinian A, Edjlali L (2016) A computational study on the SO2 adsorption by the pristine, al, and Si doped BN nanosheets. Superlattice Microst 100:350–357

    Article  CAS  Google Scholar 

  44. Oku T, Nishiwaki A, Narita I (2004) Formation and atomic structure of B12N12 nanocage clusters studied by mass spectrometry and cluster calculation. Sci Technol Adv Mater 5:635–638

    Article  CAS  Google Scholar 

  45. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  46. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  47. Tomić S, Montanari B, Harrison N (2008) The group III–V’s semiconductor energy gaps predicted using the B3LYP hybrid functional. Physica E: Low-Dimensional Systems and Nanostructures 40:2125–2127

    Article  Google Scholar 

  48. O'boyle NM, Tenderholt AL, Langner KM (2008) Cclib: a library for package-independent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  Google Scholar 

  49. Boys SF, Bernardi FD (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  50. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117(47):12590–12600

    Article  CAS  Google Scholar 

  51. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J Phys Chem C 119(11):6398–6404

    Article  CAS  Google Scholar 

  52. Beheshtian J, Peyghan AA, Bagheri Z, Tabar MB (2014) Density-functional calculations of HCN adsorption on the pristine and Si-doped graphynes. Struct Chem 25(1):1–7

    Article  CAS  Google Scholar 

  53. Beheshtian J, Peyghan AA, Noei M (2013) Sensing behavior of Al and Si doped BC 3 graphenes to formaldehyde. Sensors Actuators B Chem 181:829–834

    Article  CAS  Google Scholar 

  54. Eslami M, Peyghan AA (2015) DNA nucleobase interaction with graphene like BC 3 nano-sheet based on density functional theory calculations. Thin Solid Films 589:52–56

    Article  CAS  Google Scholar 

  55. Nejati K, Hosseinian A, Vessally E, Bekhradnia A, Edjlali L (2017) A comparative DFT study on the interaction of cathinone drug with BN nanotubes, nanocages, and nanosheets. Appl Surf Sci 422:763–768

    Article  CAS  Google Scholar 

  56. Peyghan AA, Aslanzadeh SA, Noei M (2014) A density functional study on the acidity properties of pristine and modified SiC nano-sheets. Phys B Condens Matter 443:54–59

    Article  Google Scholar 

  57. Pashangpour M, Peyghan AA (2015) Adsorption of carbon monoxide on the pristine, B-and Al-doped C3N nanosheets. J Mol Model 21(5):116

    Article  Google Scholar 

  58. Vessally E, Ahmadi E, Alibabaei S, Esrafili MD, Hosseinian A (2017) Adsorption and decomposition of formaldehyde on the B12N12 nanostructure: a density functional theory study. Monatsh Chem 148:1727–1731 

    Article  CAS  Google Scholar 

  59. Nayebzadeh M, Peyghan AA, Soleymanabadi H (2014) Density functional study on the adsorption and dissociation of nitroamine over the nanosized tube of MgO. Physica E: Low-Dimensional Systems and Nanostructures 62:48–54

    Article  CAS  Google Scholar 

  60. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Carbon nanotube sensors for gas and organic vapor detection. Nano Lett 3(7):929–933

    Article  CAS  Google Scholar 

  61. Peng S, Cho K, Qi P, Dai H (2004) Ab initio study of CNT NO2 gas sensor. Chem Phys Lett 387(4):271–276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Vessally or S. M. Mousavi-Khoshdel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 921 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vessally, E., Moladoust, R., Mousavi-Khoshdel, S.M. et al. Chloropicrin sensor based on the pristine BN nanocones: DFT studies. Struct Chem 29, 585–592 (2018). https://doi.org/10.1007/s11224-017-1055-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1055-3

Keywords

Navigation