Skip to main content

Advertisement

Log in

Tumor Necrosis Factor Receptor-associated Factor 1 influences KRN/I-Ag7 Mouse Arthritis Autoantibody Production

  • Original Research
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Recently, genomewide association analysis has revealed that the Tumor Necrosis Factor Receptor-associated factor 1-Complement 5 (TRAF1-C5) containing locus on chromosome 9 was associated with an increased risk for RA. Studies in model systems suggested that either gain- or loss-of-function TRAF1 mutations have immune effects that could plausibly lead to or exacerbate the arthritis phenotype. KRN/I-Ag7 (KxB/N) is a genetic mouse model of inflammatory arthritis. We aimed to assess the impact of TRAF1 deficiency on KRN/I-Ag7 mice.

Methods

We have bred KRN/I-Ag7 mice onto a TRAF1-deficient background and followed cohorts for the spontaneous appearance of arthritis. We have also transferred KxB/N serum to B6.I-Ag7 TRAF1KO recipients. In addition, systemic autoimmunity was induced through cGVH by injecting bm12 splenocytes into TRAF1KO recipient mice.

Results

TRAF1-deficient KRN/I-Ag7 mice spontaneously developed severe, progressive arthritis, comparable to that seen in TRAF1-intact KRN/I-Ag7 mice. However, the anti-GPI antibody titer was significantly lower in the former group. Interestingly, the TRAF1KO mice that had background levels of anti-GPI antibodies still showed severe arthritis, although with a brief delay compared to TRAF1 sufficient mice. In addition, TRAF1KO mice were fully susceptible to passive, serum transfer experiments. In another model of autoimmunity, TRAF1KO had no effect on cGVH autoantibodies production; nor was the response to an exogenous antigen impaired.

Conclusion

The pathogenesis of spontaneous KRN/I-Ag7 arthritis can largely proceed by TRAF1-independent pathways. The production of anti-GPI autoantibody, but not other autoantibody or antibody responses, was markedly impaired by TRAF1 deficiency. The spontaneous arthritis model in KRN mice appears to be much less antibody dependent than previously believed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. 2003;423:356.

    Article  PubMed  CAS  Google Scholar 

  2. Newton JL, Harney SM, Wordsworth BP, Brown MA. A review of the MHC genetics of rheumatoid arthritis. Genes Immun. 2004;5:151.

    Article  PubMed  CAS  Google Scholar 

  3. Plenge RM, Padyukov L, Remmers EF, Purcell S, Lee AT, Karlson EW, et al. Replication of putative candidate-gene associations with rheumatoid arthritis in >4,000 samples from North America and Sweden: association of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet. 2005;77:1044–60.

    Article  PubMed  CAS  Google Scholar 

  4. Lee AT, Li W, Liew A, Bombardier C, Weisman M, Massarotti EM, et al. The PTPN22 R620W polymorphism associates with RF positive rheumatoid arthritis in a dose-dependent manner but not with HLA-SE status. Genes Immun. 2005;6:129–33.

    Article  PubMed  CAS  Google Scholar 

  5. Maini RN. Current and new antitumor necrosis factor agents in perspective. Arthritis Res Ther. 2004;6:S1–2.

    Article  PubMed  Google Scholar 

  6. Kurreeman FAS, Padyukov L, Marques RB, et al. A candidate gene approach identifies the TRAF1/C5 region as a risk factor for rheumatoid arthritis. PLoS Med. 2007;4:e278.

    Article  PubMed  Google Scholar 

  7. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis- a genomewide study. N Engl J Med. 2007;357:1199.

    Article  PubMed  CAS  Google Scholar 

  8. Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)-α family of adapter proteins that regulates life and death. Gene Dev. 1998;12:2821–30.

    Article  PubMed  CAS  Google Scholar 

  9. Fotin-Mleczek M, Henkler F, Hausser A, Glauner H, Samel D, Graness A, et al. TRAF1 regulates CD40-induced TRAF2-mediated NF-κB activation. J Biol Chem. 2004;279:677–85.

    Article  PubMed  CAS  Google Scholar 

  10. Kato Jr T, Gotoh Y, Hoffmann A, Ono Y. Negative regulation of constitutive NF-κB and JNK signaling by PKN1-mediated phosphorylation of TRAF1. Genes to Cells. 2008;13:509–20.

    Article  PubMed  CAS  Google Scholar 

  11. Lavorgna A, De Filippi R, Formisano S, Leonardi A. TNF receptor-associated factor 1 is a positive regulator of the NF-κB alternative pathway. Mol Immunol. 2009;46:3278–82.

    Article  PubMed  CAS  Google Scholar 

  12. Sabbagh L, Srokowski CC, Pulle G, Snell LM, Sedgmen BJ, Liu Y, et al. A critical role for TNF receptor-associated factor 1 and Bimdown-regulation in CD8 memory T cell survival. Proc Natl Acad Sci U S A. 2006;103:18703–8.

    Article  PubMed  CAS  Google Scholar 

  13. Wicovsky A, Henkler F, Salzmann S, Scheurich P, Kneitz C, Wajant H. Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling andmodifies TNFR1-TNFR2 cooperation. Oncogene. 2009;28:1769–81.

    Article  PubMed  CAS  Google Scholar 

  14. Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39:2040–4.

    Article  PubMed  CAS  Google Scholar 

  15. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell. 1996;87:811–22.

    Article  PubMed  CAS  Google Scholar 

  16. Matsumoto I, Staub A, Benoist C, Mathis D. Arthritis provoked by linked T and B cell recognition of a glycolytic enzyme. Science. 1999;286:1732–5.

    Article  PubMed  CAS  Google Scholar 

  17. Korganow AS, Ji H, Mangialaio S, Duchatelle V, Pelanda R, Martin T, et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity. 1999;10:451–61.

    Article  PubMed  CAS  Google Scholar 

  18. Hong J, Koichiro O, Mahmood U, Lee DM, Hofhuis FMA, Boackle SA, et al. Arthritis critically dependent on innate immune system players. Immunity. 2002;16:157–68.

    Article  Google Scholar 

  19. Binstadt BA, Hebert JL, Ortiz-Lopez A, Bronson R, Benoist C, Mathis D. The same systemic autoimmune disease provokes arthritis and endocarditis via distinct mechanisms. Proc Natl Acad Sci U S A. 2009;106:16758–63.

    Article  PubMed  CAS  Google Scholar 

  20. Tsao PY, Arora V, Ji MQ, Wright AC, Eisenberg RA. KRN/I-Ag7 mouse arthritis is independent of complement C3. J Clin Immunol. 2011;31:857–63.

    Article  PubMed  CAS  Google Scholar 

  21. Monach PA, Mathis D, Benoist C. The K/BxN arthritis model. In: Coligan JE et al., editors. Current protocols in immunology, Chapter 15: Unit 15 22. New York: Wiley; 2008.

  22. Tsao PY, Jiao J, Ji MQ, Cohen PL, Eisenberg RA. T cell-independent spontaneous loss of tolerance by anti-double-stranded DNA B cells in C57BL/6 mice. J Immunol. 2008;181:7770–7.

    PubMed  CAS  Google Scholar 

  23. Spergel JM, Mizoguchi E, Brewer JP, Martin TR, Bhan AK, Geha RS. Epicutaneous sensitization with protein anti-gen induces localized allergic dermatitis and hyperresponsiveness tomethacholine after single exposure to aerosolized antigen inmice. J Clin Investig. 1998;101:1614–22.

    Article  PubMed  CAS  Google Scholar 

  24. Feuerstein N, Chen F, Madaio M, Maldonado M, Eisenberg RA. Induction of autoimmunity in a transgenic model of B cell receptor peripheral tolerance: changes in coreceptors and B cell receptor-induced tyrosine-phosphoproteins. J Immunol. 1999;163:5287–97.

    PubMed  CAS  Google Scholar 

  25. Xavier RJ, Rioux JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol. 2008;8:631–43.

    Article  PubMed  CAS  Google Scholar 

  26. Tsitsikov EN, Laouini D, Dunn IF, Sannikova TY, Davidson L, Alt FW, et al. TRAF1 Is a Negative Regulator of TNF Signaling: Enhanced TNF Signaling in TRAF1-Deficient Mice. Immunity. 2001;15:647–57.

    Article  PubMed  CAS  Google Scholar 

  27. Kyburz D, Corr M. The KRN mouse model of inflammatory arthritis. Springer Semin Immun. 2003;25:79–90.

    Article  CAS  Google Scholar 

  28. Jacobs JP, Wu HJ, Benoist C, Mathis D. IL-17-producing T cells can augment autoantibody-induced arthritis. Proc Natl Acad Sci U S A. 2009;106:21789–94.

    Article  PubMed  CAS  Google Scholar 

  29. Wu HJ, Ivanov II, Darce J, Hattori K, Shima T, Umesaki Y, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity. 2010;32:815–27.

    Article  PubMed  CAS  Google Scholar 

  30. Schellekens GA, Visser H, De Jong BAW, van den Hoogen FHJ, Hazes JMW, Breedveld FC, et al. The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum. 2000;43:155–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Xin Tian for helpful mouse bleeding.

Disclosures

The authors have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Eisenberg.

Additional information

This work was supported by the Arthritis Foundation, the American Autoimmune Related Disease Association, and the NIH (R01-AR-34156; R01-AI063626; R01-EB012065).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, T., Choi, Y., Finkel, T.H. et al. Tumor Necrosis Factor Receptor-associated Factor 1 influences KRN/I-Ag7 Mouse Arthritis Autoantibody Production. J Clin Immunol 33, 759–766 (2013). https://doi.org/10.1007/s10875-013-9866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-013-9866-5

Keywords

Navigation