Skip to main content

Advertisement

Log in

A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren’s Syndrome

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus, systemic sclerosis, rheumatoid arthritis, and Sjögren’s syndrome are four major autoimmune rheumatic diseases characterized by the presence of autoantibodies, caused by a dysregulation of the immune system that leads to a wide variety of clinical manifestations. These conditions present complex etiologies strongly influenced by multiple environmental and genetic factors. The human leukocyte antigen (HLA) region was the first locus identified to be associated and still represents the strongest susceptibility factor for each of these conditions, particularly the HLA class II genes, including DQA1, DQB1, and DRB1, but class I genes have also been associated. Over the last two decades, the genetic component of these disorders has been extensively investigated and hundreds of non-HLA risk genetic variants have been uncovered. Furthermore, it is widely accepted that autoimmune rheumatic diseases share molecular disease pathways, such as the interferon (IFN) type I pathways, which are reflected in a common genetic background. Some examples of well-known pleiotropic loci for autoimmune rheumatic diseases are the HLA region, DNASEL13, TNIP1, and IRF5, among others. The identification of the causal molecular mechanisms behind the genetic associations is still a challenge. However, recent advances have been achieved through mouse models and functional studies of the loci. Here, we provide an updated overview of the genetic architecture underlying these four autoimmune rheumatic diseases, with a special focus on the HLA region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cho JH, Feldman M (2015) Heterogeneity of autoimmune diseases: pathophysiologic insights from genetics and implications for new therapies. Nat Med 21:730–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cooper GS, Bynum MLK, Somers EC (2009) Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J Autoimmun 33:197–207

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hayter SM, Cook MC (2012) Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. Autoimmun Rev 11:754–765

    Article  PubMed  Google Scholar 

  4. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP et al (2015). Systemic sclerosis Nature Reviews Disease Primers. https://doi.org/10.1038/nrdp.2015.2

    Article  PubMed  Google Scholar 

  5. Denton CP, Khanna D (2017) Systemic sclerosis. Lancet 390:1685–1699

    Article  PubMed  Google Scholar 

  6. Vojdani A (2014) A potential link between environmental triggers and autoimmunity. Autoimmune Dis 2014:437231

    PubMed  PubMed Central  Google Scholar 

  7. Munroe ME, Anderson JR, Gross TF, Stunz LL, Bishop GA, James JA (2020) Epstein-Barr functional mimicry: pathogenicity of oncogenic latent membrane protein-1 in systemic lupus erythematosus and autoimmunity. Front Immunol 11:606936

    Article  CAS  PubMed  Google Scholar 

  8. Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P et al (1992) A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 35:311–318

    Article  CAS  PubMed  Google Scholar 

  9. Feghali-Bostwick C, Medsger TA Jr, Wright TM (2003) Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum 48:1956–1963

    Article  PubMed  Google Scholar 

  10. MacGregor AJ, Snieder H, Rigby AS, Koskenvuo M, Kaprio J, Aho K et al (2000) Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum 43:30–37

    Article  CAS  PubMed  Google Scholar 

  11. Alarcón-Segovia D, Alarcón-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR et al (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 52:1138–1147

    Article  PubMed  Google Scholar 

  12. Richard-Miceli C, Criswell LA (2012) Emerging patterns of genetic overlap across autoimmune disorders. Genome Med 4:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grumet FC, Coukell A, Bodmer JG, Bodmer WF, McDevitt HO (1971) Histocompatibility (HL-A) antigens associated with systemic lupus erythematosus. A possible genetic predisposition to disease. N Engl J Med 285:193–196

  14. McMichael AJ, Sasazuki T, McDevitt HO, Payne RO (1977) Increased frequency of HLA-Cw3 and HLA-Dw4 in rheumatoid arthritis. Arthritis Rheum 20:1037–1042

    Article  CAS  PubMed  Google Scholar 

  15. Stastny P (1978) Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med 298:869–871

    Article  CAS  PubMed  Google Scholar 

  16. Siegel RJ, Bridges SL Jr, Ahmed S (2019) HLA-C: an accomplice in rheumatic diseases. ACR Open Rheumatol 1:571–579

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morris DL, Taylor KE, Fernando MMA, Nititham J, Alarcón-Riquelme ME, Barcellos LF et al (2012) Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am J Hum Genet 91:778–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Louthrenoo W, Kasitanon N, Wichainun R, Wangkaew S, Sukitawut W, Ohnogi Y et al (2013) The genetic contribution of HLA-DRB5*01:01 to systemic lupus erythematosus in Thailand. Int J Immunogenet 40:126–130

    Article  CAS  PubMed  Google Scholar 

  19. Alarcón-Riquelme ME, Ziegler JT, Molineros J, Howard TD, Moreno-Estrada A, Sánchez-Rodríguez E et al (2016) Genome-wide association study in an Amerindian ancestry population reveals novel systemic lupus erythematosus risk loci and the role of European admixture. Arthritis Rheumatol 68:932–943

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hanscombe KB, Morris DL, Noble JA, Dilthey AT, Tombleson P, Kaufman KM et al (2018) Genetic fine mapping of systemic lupus erythematosus MHC associations in Europeans and African Americans. Hum Mol Genet 27:3813–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim K, Bang S-Y, Lee H-S, Okada Y, Han B, Saw W-Y et al (2014) The HLA-DRβ1 amino acid positions 11–13-26 explain the majority of SLE-MHC associations. Nat Commun 5:5902

    Article  CAS  PubMed  Google Scholar 

  22. Sun C, Molineros JE, Looger LL, Zhou X-J, Kim K, Okada Y et al (2016) High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 48:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arnett FC, Hamilton RG, Reveille JD, Bias WB, Harley JB, Reichlin M (1989) Genetic studies of Ro (SS-A) and La (SS-B) autoantibodies in families with systemic lupus erythematosus and primary Sjögren’s syndrome. Arthritis Rheum 32:413–419

    Article  CAS  PubMed  Google Scholar 

  24. Molineros JE, Looger LL, Kim K, Okada Y, Terao C, Sun C et al (2019) Amino acid signatures of HLA class-I and II molecules are strongly associated with SLE susceptibility and autoantibody production in Eastern Asians. PLoS Genet 15:e1008092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barturen G, Babaei S, Català-Moll F, Martínez-Bueno M, Makowska Z, Martorell-Marugán J et al (2021) Integrative analysis reveals a molecular stratification of systemic autoimmune diseases. Arthritis Rheumatol 73:1073–1085

    Article  CAS  PubMed  Google Scholar 

  26. Raj P, Rai E, Song R, Khan S, Wakeland BE, Viswanathan K et al (2016) Regulatory polymorphisms modulate the expression of HLA class II molecules and promote autoimmunity. Elife 5. https://doi.org/10.7554/eLife.12089

  27. Miller S, Tsou P-S, Coit P, Gensterblum-Miller E, Renauer P, Rohraff DM et al (2019) Hypomethylation of STAT1 and HLA-DRB1 is associated with type-I interferon-dependent HLA-DRB1 expression in lupus CD8+ T cells. Ann Rheum Dis 78:519–528

    Article  CAS  PubMed  Google Scholar 

  28. Acosta-Herrera M, Kerick M, Lopéz-Isac E, Assassi S, Beretta L, Simeón-Aznar CP et al (2021) Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2021-219884

    Article  PubMed  Google Scholar 

  29. González-Serna D, López-Isac E, Yilmaz N, Gharibdoost F, Jamshidi A, Kavosi H et al (2019) Analysis of the genetic component of systemic sclerosis in Iranian and Turkish populations through a genome-wide association study. Rheumatology 58:289–298

    Article  PubMed  Google Scholar 

  30. Gourh P, Safran SA, Alexander T, Boyden SE, Morgan ND, Shah AA et al (2020) HLA and autoantibodies define scleroderma subtypes and risk in African and European Americans and suggest a role for molecular mimicry. Proc Natl Acad Sci U S A 117:552–562

    Article  CAS  PubMed  Google Scholar 

  31. Arnett FC, Gourh P, Shete S, Ahn CW, Honey RE, Agarwal SK et al (2010) Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann Rheum Dis 69:822–827

    Article  CAS  PubMed  Google Scholar 

  32. Beretta L, Rueda B, Marchini M, Santaniello A, Simeón CP, Fonollosa V et al (2012) Analysis of class II human leucocyte antigens in Italian and Spanish systemic sclerosis. Rheumatology 51:52–59

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez-Reyna TS, Mercado-Velázquez P, Yu N, Alosco S, Ohashi M, Lebedeva T et al (2015) HLA class I and II blocks are associated to susceptibility, clinical subtypes and autoantibodies in Mexican systemic sclerosis (SSc) patients. PLoS ONE 10:e0126727

    Article  PubMed  PubMed Central  Google Scholar 

  34. Terao C, Kawaguchi T, Dieude P, Varga J, Kuwana M, Hudson M et al (2017) Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann Rheum Dis 76:1150–1158

    Article  CAS  PubMed  Google Scholar 

  35. Sharif R, Fritzler MJ, Mayes MD, Gonzalez EB, McNearney TA, Draeger H et al (2011) Anti-fibrillarin antibody in African American patients with systemic sclerosis: immunogenetics, clinical features, and survival analysis. J Rheumatol 38:1622–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mayes MD, Bossini-Castillo L, Gorlova O, Martin JE, Zhou X, Chen WV et al (2014) Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am J Hum Genet 94:47–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gorlova O, Martin J-E, Rueda B, Koeleman BPC, Ying J, Teruel M et al (2011) Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet 7:e1002178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. López-Isac E, Acosta-Herrera M, Kerick M, Assassi S, Satpathy AT, Granja J et al (2019) GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat Commun 10:4955

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gregersen PK, Silver J, Winchester RJ (1987) The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum 30:1205–1213

  40. Raychaudhuri S, Sandor C, Stahl EA, Freudenberg J, Lee H-S, Jia X et al (2012) Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat Genet 44:291–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han B, Diogo D, Eyre S, Kallberg H, Zhernakova A, Bowes J et al (2014) Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am J Hum Genet 94:522–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Okada Y, Suzuki A, Ikari K, Terao C, Kochi Y, Ohmura K et al (2016) Contribution of a non-classical HLA gene, HLA-DOA, to the risk of rheumatoid arthritis. Am J Hum Genet 99:366–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Viatte S, Plant D, Han B, Fu B, Yarwood A, Thomson W et al (2015) Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 313:1645–1656

    Article  PubMed  PubMed Central  Google Scholar 

  44. Terao C, Brynedal B, Chen Z, Jiang X, Westerlind H, Hansson M et al (2019) Distinct HLA Associations with rheumatoid arthritis subsets defined by serological subphenotype. Am J Hum Genet 105:880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE (2020) IPD-IMGT/HLA database. Nucleic Acids Res 48:D948–D955

    CAS  PubMed  Google Scholar 

  46. Tan LK, Too CL, Diaz-Gallo LM, Wahinuddin S, Lau IS, Heselynn H et al (2021) The spectrum of association in HLA region with rheumatoid arthritis in a diverse Asian population: evidence from the MyEIRA case-control study. Arthritis Res Ther 23:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cortes A, Brown MA (2011) Promise and pitfalls of the Immunochip. Arthritis Res Ther 13:101

    Article  PubMed  PubMed Central  Google Scholar 

  48. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C et al (2019) The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47:D1005–D1012

    Article  CAS  PubMed  Google Scholar 

  49. Manderson AP, Botto M, Walport MJ (2004) The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol 22:431–456

    Article  CAS  PubMed  Google Scholar 

  50. Chen JY, Wu YL, Mok MY, Wu Y-JJ, Lintner KE, Wang C-M et al (2016) Effects of complement C4 gene copy number variations, size dichotomy, and C4A deficiency on genetic risk and clinical presentation of systemic lupus erythematosus in East Asian populations. Arthritis Rheumatol 68:1442–1453

  51. Jüptner M, Flachsbart F, Caliebe A, Lieb W, Schreiber S, Zeuner R et al (2018) Low copy numbers of complement C4 and homozygous deficiency of C4A may predispose to severe disease and earlier disease onset in patients with systemic lupus erythematosus. Lupus 27:600–609

    Article  PubMed  Google Scholar 

  52. Koskenmies S, Widen E, Kere J, Julkunen H (2001) Familial systemic lupus erythematosus in Finland. J Rheumatol 28:758–760

    CAS  PubMed  Google Scholar 

  53. Edberg JC, Langefeld CD, Wu J, Moser KL, Kaufman KM, Kelly J et al (2002) Genetic linkage and association of Fcgamma receptor IIIA (CD16A) on chromosome 1q23 with human systemic lupus erythematosus. Arthritis Rheum 46:2132–2140

    Article  CAS  PubMed  Google Scholar 

  54. Su K, Wu J, Edberg JC, Li X, Ferguson P, Cooper GS et al (2004) A promoter haplotype of the immunoreceptor tyrosine-based inhibitory motif-bearing FcgammaRIIb alters receptor expression and associates with autoimmunity. I. Regulatory FCGR2B polymorphisms and their association with systemic lupus erythematosus. J Immunol 172:7186–7191

  55. Sigurdsson S, Nordmark G, Göring HHH, Lindroos K, Wiman A-C, Sturfelt G et al (2005) Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet 76:528–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Graham RR, Kozyrev SV, Baechler EC, Reddy MVPL, Plenge RM, Bauer JW et al (2006) A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 38:550–555

    Article  CAS  PubMed  Google Scholar 

  57. Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, Baechler EC et al (2007) Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 104:6758–6763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kozyrev SV, Lewén S, Reddy PMVL, Pons-Estel B, Argentine Collaborative Group, Witte T et al (2007) Structural insertion/deletion variation in IRF5 is associated with a risk haplotype and defines the precise IRF5 isoforms expressed in systemic lupus erythematosus. Arthritis Rheum 56:1234–1241

  59. Kottyan LC, Zoller EE, Bene J, Lu X, Kelly JA, Rupert AM et al (2015) The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share. Hum Mol Genet 24:582–596

    Article  CAS  PubMed  Google Scholar 

  60. Begovich AB, Carlton VEH, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al (2004) A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 75:330–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kyogoku C, Langefeld CD, Ortmann WA, Lee A, Selby S, Carlton VEH et al (2004) Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet 75:504–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Remmers EF, Plenge RM, Lee AT, Graham RR, Hom G, Behrens TW et al (2007) STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med 357:977–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patel ZH, Lu X, Miller D, Forney CR, Lee J, Lynch A et al (2018) A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus. Hum Mol Genet 27:2392–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hagberg N, Joelsson M, Leonard D, Reid S, Eloranta M-L, Mo J et al (2018) The STAT4 SLE risk allele rs7574865[T] is associated with increased IL-12-induced IFN-γ production in T cells from patients with SLE. Ann Rheum Dis 77:1070–1077

    Article  CAS  PubMed  Google Scholar 

  65. International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN), Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40: 204–210

  66. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909

    Article  CAS  PubMed  Google Scholar 

  67. Kozyrev SV, Abelson A-K, Wojcik J, Zaghlool A, Linga Reddy MVP, Sanchez E et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40:211–216

    Article  CAS  PubMed  Google Scholar 

  68. Nath SK, Han S, Kim-Howard X, Kelly JA, Viswanathan P, Gilkeson GS et al (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–154

    Article  CAS  PubMed  Google Scholar 

  69. Sánchez E, Comeau ME, Freedman BI, Kelly JA, Kaufman KM, Langefeld CD et al (2011) Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis Rheum 63:3493–3501

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bentham J, Morris DL, Graham DSC, Pinder CL, Tombleson P, Behrens TW et al (2015) Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 47:1457–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Georg I, Díaz-Barreiro A, Morell M, Pey AL, Alarcón-Riquelme ME (2020) BANK1 interacts with TRAF6 and MyD88 in innate immune signaling in B cells. Cell Mol Immunol 17:954–965

    Article  CAS  PubMed  Google Scholar 

  72. Wu Y-Y, Kumar R, Iida R, Bagavant H, Alarcón-Riquelme ME (2016) BANK1 regulates IgG production in a lupus model by controlling TLR7-dependent STAT1 activation. PLoS ONE 11:e0156302

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gómez Hernández G, Morell M, Alarcón-Riquelme ME (2021) The role of BANK1 in B cell signaling and disease. Cells 10. https://doi.org/10.3390/cells10051184

  74. Yang W, Zhao M, Hirankarn N, Lau CS, Mok CC, Chan TM et al (2009) ITGAM is associated with disease susceptibility and renal nephritis of systemic lupus erythematosus in Hong Kong Chinese and Thai. Hum Mol Genet 18:2063–2070

    Article  PubMed  PubMed Central  Google Scholar 

  75. Kim-Howard X, Maiti AK, Anaya J-M, Bruner GR, Brown E, Merrill JT et al (2010) ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis 69:1329–1332

    Article  PubMed  Google Scholar 

  76. Bolin K, Sandling JK, Zickert A, Jönsen A, Sjöwall C, Svenungsson E et al (2013) Association of STAT4 polymorphism with severe renal insufficiency in lupus nephritis. PLoS ONE 8:e84450

    Article  PubMed  PubMed Central  Google Scholar 

  77. Harley JB, Chen X, Pujato M, Miller D, Maddox A, Forney C et al (2018) Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet 50:699–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Löfgren SE, Frostegård J, Truedsson L, Pons-Estel BA, D’Alfonso S, Witte T et al (2012) Genetic association of miRNA-146a with systemic lupus erythematosus in Europeans through decreased expression of the gene. Genes Immun 13:268–274

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tang Y, Luo X, Cui H, Ni X, Yuan M, Guo Y et al (2009) MicroRNA-146A contributes to abnormal activation of the type I interferon pathway in human lupus by targeting the key signaling proteins. Arthritis Rheum 60:1065–1075

    Article  CAS  PubMed  Google Scholar 

  80. Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C et al (2021) SLE non-coding genetic risk variant determines the epigenetic dysfunction of an immune cell specific enhancer that controls disease-critical microRNA expression. Nat Commun 12:135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Harris VM, Koelsch KA, Kurien BT, Harley ITW, Wren JD, Harley JB et al (2019) Characterization of cxorf21 provides molecular insight into female-bias immune response in SLE pathogenesis. Front Immunol 10:2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Souyris M, Cenac C, Azar P, Daviaud D, Canivet A, Grunenwald S et al (2018) TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol 3. https://doi.org/10.1126/sciimmunol.aap8855

  83. Brown GJ, Cañete PF, Wang H, Medhavy A, Bones J, Roco JA et al (2022) TLR7 gain-of-function genetic variation causes human lupus. Nature 605:349–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Langefeld CD, Ainsworth HC, Cunninghame Graham DS, Kelly JA, Comeau ME, Marion MC et al (2017) Transancestral mapping and genetic load in systemic lupus erythematosus. Nat Commun 8:16021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Radstake TRDJ, Gorlova O, Rueda B, Martin J-E, Alizadeh BZ, Palomino-Morales R et al (2010) Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat Genet 42:426–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Allanore Y, Saad M, Dieudé P, Avouac J, Distler JHW, Amouyel P et al (2011) Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet 7:e1002091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Evans LM, Tahmasbi R, Vrieze SI, Abecasis GR, Das S, Gazal S et al (2018) Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat Genet 50:737–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bossini-Castillo L, López-Isac E, Mayes MD, Martín J (2015) Genetics of systemic sclerosis. Semin Immunopathol 37:443–451

    Article  CAS  PubMed  Google Scholar 

  89. Martin J-E, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC et al (2012) Identification of CSK as a systemic sclerosis genetic risk factor through genome wide association study follow-up. Hum Mol Genet 21:2825–2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dieudé P, Guedj M, Wipff J, Ruiz B, Riemekasten G, Matucci-Cerinic M et al (2010) Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann Rheum Dis 69:1958–1964

    Article  PubMed  Google Scholar 

  91. Zochling J, Newell F, Charlesworth JC, Leo P, Stankovich J, Cortes A et al (2014) An Immunochip-based interrogation of scleroderma susceptibility variants identifies a novel association at DNASE1L3. Arthritis Res Ther 16:438

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bossini-Castillo L, Villanueva-Martin G, Kerick M, Acosta-Herrera M, López-Isac E, Simeón CP et al (2021) Genomic risk score impact on susceptibility to systemic sclerosis. Ann Rheum Dis 80:118–127

    Article  PubMed  Google Scholar 

  93. Lei C, Dongqing Z, Yeqing S, Oaks MK, Lishan C, Jianzhong J et al (2005) Association of the CTLA-4 gene with rheumatoid arthritis in Chinese Han population. Eur J Hum Genet 13:823–828

    Article  PubMed  Google Scholar 

  94. Suzuki A, Yamada R, Chang X, Tokuhiro S, Sawada T, Suzuki M et al (2003) Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat Genet 34:395–402

    Article  CAS  PubMed  Google Scholar 

  95. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  96. Plenge RM, Cotsapas C, Davies L, Price AL, de Bakker PIW, Maller J et al (2007) Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39:1477–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B et al (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis–a genomewide study. N Engl J Med 357:1199–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Julià A, Ballina J, Cañete JD, Balsa A, Tornero-Molina J, Naranjo A et al (2008) Genome-wide association study of rheumatoid arthritis in the Spanish population: KLF12 as a risk locus for rheumatoid arthritis susceptibility. Arthritis Rheum 58:2275–2286

    Article  PubMed  Google Scholar 

  99. Gregersen PK, Amos CI, Lee AT, Lu Y, Remmers EF, Kastner DL et al (2009) REL, encoding a member of the NF-kappaB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 41:820–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Eyre S, Bowes J, Diogo D, Lee A, Barton A, Martin P et al (2012) High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat Genet 44:1336–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Okada Y, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A et al (2012) Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat Genet 44:511–516

    Article  CAS  PubMed  Google Scholar 

  102. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP et al (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42:508–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–381

    Article  CAS  PubMed  Google Scholar 

  104. Kim K, Bang S-Y, Lee H-S, Cho S-K, Choi C-B, Sung Y-K et al (2015) High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann Rheum Dis 74:e13

    Article  PubMed  Google Scholar 

  105. Govind N, Choudhury A, Hodkinson B, Ickinger C, Frost J, Lee A et al (2014) Immunochip identifies novel, and replicates known, genetic risk loci for rheumatoid arthritis in black South Africans. Mol Med 20:341–349

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ha E, Bae S-C, Kim K (2021) Large-scale meta-analysis across East Asian and European populations updated genetic architecture and variant-driven biology of rheumatoid arthritis, identifying 11 novel susceptibility loci. Ann Rheum Dis 80:558–565

    Article  CAS  PubMed  Google Scholar 

  107. Saxena R, Plenge RM, Bjonnes AC, Dashti HS, Okada Y, Gad El Haq W et al (2017) A multinational Arab genome-wide association study identifies new genetic associations for rheumatoid arthritis. Arthritis Rheumatol 69: 976–985

  108. Laufer VA, Tiwari HK, Reynolds RJ, Danila MI, Wang J, Edberg JC et al (2019) Genetic influences on susceptibility to rheumatoid arthritis in African-Americans. Hum Mol Genet 28:858–874

    Article  CAS  PubMed  Google Scholar 

  109. Kwon Y-C, Lim J, Bang S-Y, Ha E, Hwang MY, Yoon K et al (2020) Genome-wide association study in a Korean population identifies six novel susceptibility loci for rheumatoid arthritis. Ann Rheum Dis 79:1438–1445

    Article  CAS  PubMed  Google Scholar 

  110. Leng R-X, Di D-S, Ni J, Wu X-X, Zhang L-L, Wang X-F et al (2020) Identification of new susceptibility loci associated with rheumatoid arthritis. Ann Rheum Dis 79:1565–1571

    Article  CAS  PubMed  Google Scholar 

  111. Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, Voight BF et al (2012) Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet 44:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R et al (2015) An atlas of genetic correlations across human diseases and traits. Nat Genet 47:1236–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4(Suppl 3):S265–S272

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lee SH, Byrne EM, Hultman CM, Kähler A, Vinkhuyzen AAE, Ripke S et al (2015) New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. Int J Epidemiol 44:1706–1721

    Article  PubMed  PubMed Central  Google Scholar 

  115. Maehlen MT, Olsen IC, Andreassen BK, Viken MK, Jiang X, Alfredsson L et al (2015) Genetic risk scores and number of autoantibodies in patients with rheumatoid arthritis. Ann Rheum Dis 74:762–768

    Article  CAS  PubMed  Google Scholar 

  116. Yarwood A, Han B, Raychaudhuri S, Bowes J, Lunt M, Pappas DA et al (2015) A weighted genetic risk score using all known susceptibility variants to estimate rheumatoid arthritis risk. Ann Rheum Dis 74:170–176

    Article  PubMed  Google Scholar 

  117. Sparks JA, Chen C-Y, Jiang X, Askling J, Hiraki LT, Malspeis S et al (2015) Improved performance of epidemiologic and genetic risk models for rheumatoid arthritis serologic phenotypes using family history. Ann Rheum Dis 74:1522–1529

    Article  PubMed  Google Scholar 

  118. Chibnik LB, Keenan BT, Cui J, Liao KP, Costenbader KH, Plenge RM et al (2011) Genetic risk score predicting risk of rheumatoid arthritis phenotypes and age of symptom onset. PLoS ONE 6:e24380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rostami S, Hoff M, Brown MA, Hveem K, Videm V (2020) Comparison of methods to construct a genetic risk score for prediction of rheumatoid arthritis in the population-based Nord-Trøndelag Health Study. Norway Rheumatology 59:1743–1751

    Article  CAS  PubMed  Google Scholar 

  120. Jiang X, Alfredsson L (2020) Modifiable environmental exposure and risk of rheumatoid arthritis-current evidence from genetic studies. Arthritis Res Ther 22:154

    Article  PubMed  PubMed Central  Google Scholar 

  121. Tang B, Shi H, Alfredsson L, Klareskog L, Padyukov L, Jiang X (2021) Obesity-related traits and the development of rheumatoid arthritis: evidence from genetic data. Arthritis Rheumatol 73:203–211

    Article  CAS  PubMed  Google Scholar 

  122. Qian Y, Zhang L, Wu DJH, Xie Z, Wen C, Mao Y (2020) Genetic predisposition to smoking is associated with risk of rheumatoid arthritis: a Mendelian randomization study. Arthritis Res Ther 22:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lessard CJ, Li H, Adrianto I, Ice JA, Rasmussen A, Grundahl KM et al (2013) Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren’s syndrome. Nat Genet 45:1284–1292

    Article  CAS  PubMed  Google Scholar 

  124. Song I-W, Chen H-C, Lin Y-F, Yang J-H, Chang C-C, Chou C-T et al (2016) Identification of susceptibility gene associated with female primary Sjögren’s syndrome in Han Chinese by genome-wide association study. Hum Genet 135:1287–1294

    Article  CAS  PubMed  Google Scholar 

  125. Taylor KE, Wong Q, Levine DM, McHugh C, Laurie C, Doheny K et al (2017) Genome-wide association analysis reveals genetic heterogeneity of Sjögren’s syndrome according to ancestry. Arthritis Rheumatol 69:1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Li H, Reksten TR, Ice JA, Kelly JA, Adrianto I, Rasmussen A et al (2017) Identification of a Sjögren’s syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genet 13:e1006820

    Article  PubMed  PubMed Central  Google Scholar 

  127. Thorlacius GE, Hultin-Rosenberg L, Sandling JK, Bianchi M, Imgenberg-Kreuz J, Pucholt P et al (2021) Genetic and clinical basis for two distinct subtypes of primary Sjögren’s syndrome. Rheumatology 60:837–848

    CAS  PubMed  Google Scholar 

  128. Zhernakova A, Withoff S, Wijmenga C (2013) Clinical implications of shared genetics and pathogenesis in autoimmune diseases. Nat Rev Endocrinol 9:646–659

    Article  CAS  PubMed  Google Scholar 

  129. Zhernakova A, van Diemen CC, Wijmenga C (2009) Detecting shared pathogenesis from the shared genetics of immune-related diseases. Nat Rev Genet 10:43–55

    Article  CAS  PubMed  Google Scholar 

  130. López-Isac E, Martín J-E, Assassi S, Simeón CP, Carreira P, Ortego-Centeno N et al (2016) Brief report: IRF4 newly identified as a common susceptibility locus for systemic sclerosis and rheumatoid arthritis in a cross-disease meta-analysis of genome-wide association studies. Arthritis Rheumatol 68:2338–2344

    Article  PubMed  PubMed Central  Google Scholar 

  131. Acosta-Herrera M, Kerick M, González-Serna D, Myositis Genetics Consortium, Scleroderma Genetics Consortium, Wijmenga C et al (2019) Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann Rheum Dis 78:311–319

  132. Márquez A, Kerick M, Zhernakova A, Gutierrez-Achury J, Chen W-M, Onengut-Gumuscu S et al (2018) Meta-analysis of Immunochip data of four autoimmune diseases reveals novel single-disease and cross-phenotype associations. Genome Med 10:97

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang Y, Chen S, Chen J, Xie X, Gao S, Zhang C et al (2020) Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren’s syndrome highlight T cell-initiated autoimmunity. Ann Rheum Dis 79:268–275

    Article  CAS  PubMed  Google Scholar 

  134. Barturen G, Beretta L, Cervera R, Van Vollenhoven R, Alarcón-Riquelme ME (2018) Moving towards a molecular taxonomy of autoimmune rheumatic diseases. Nat Rev Rheumatol 14:75–93

    Article  CAS  PubMed  Google Scholar 

  135. Ishigaki K (2021) Beyond GWAS: from simple associations to functional insights. Semin Immunopathol. https://doi.org/10.1007/s00281-021-00894-5

    Article  PubMed  Google Scholar 

  136. Muskardin TLW, Niewold TB (2018) Type I interferon in rheumatic diseases. Nat Rev Rheumatol 14:214–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Higgs BW, Liu Z, White B, Zhu W, White WI, Morehouse C et al (2011) Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann Rheum Dis 70:2029–2036

    Article  CAS  PubMed  Google Scholar 

  138. Elkon KB, Briggs TA (2020) The (Orf)ull truth about IRF5 and type I interferons in SLE. Nature Rev Rheumatol 543–544

  139. Song S, De S, Nelson V, Chopra S, LaPan M, Kampta K et al (2020) Inhibition of IRF5 hyperactivation protects from lupus onset and severity. J Clin Invest 130:6700–6717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Idborg H, Zandian A, Ossipova E, Wigren E, Preger C, Mobarrez F et al (2019) Circulating levels of interferon regulatory factor-5 associates with subgroups of systemic lupus erythematosus patients. Front Immunol 10:1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N et al (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 43:1186–1188

    Article  CAS  PubMed  Google Scholar 

  142. Serpas L, Chan RWY, Jiang P, Ni M, Sun K, Rashidfarrokhi A et al (2019) Dnase1l3 deletion causes aberrations in length and end-motif frequencies in plasma DNA. Proc Natl Acad Sci U S A 116:641–649

    Article  CAS  PubMed  Google Scholar 

  143. Coke LN, Wen H, Comeau M, Ghanem MH, Shih A, Metz CN et al (2021) Arg206Cys substitution in DNASE1L3 causes a defect in DNASE1L3 protein secretion that confers risk of systemic lupus erythematosus. Ann Rheum Dis. https://doi.org/10.1136/annrheumdis-2020-218810

    Article  PubMed  Google Scholar 

  144. Adrianto I, Wang S, Wiley GB, Lessard CJ, Kelly JA, Adler AJ et al (2012) Association of two independent functional risk haplotypes in TNIP1 with systemic lupus erythematosus. Arthritis Rheum 64:3695–3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nanda SK, Venigalla RKC, Ordureau A, Patterson-Kane JC, Powell DW, Toth R et al (2011) Polyubiquitin binding to ABIN1 is required to prevent autoimmunity. J Exp Med 208:1215–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Spanish Ministry of Science and Innovation (RTI20181013 [32-B-100] to JM and PID2020-113776 Gb-I00 to MEAR), Red de Investigación en Inflamación y Enfermedades Reumáticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013 to JM), the Consejería de Salud y Familias (PE-0297–2019 to MEAR), and the Consejería de Transformación económica, industria, conocimiento y universidades (PY20-00473 to MEAR). LOF was funded by the Spanish Ministry of Science and Innovation through the Juan de la Cierva Incorporacion program (ref. IJC2019-040746-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta E. Alarcón-Riquelme.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortíz-Fernández, L., Martín, J. & Alarcón-Riquelme, M.E. A Summary on the Genetics of Systemic Lupus Erythematosus, Rheumatoid Arthritis, Systemic Sclerosis, and Sjögren’s Syndrome. Clinic Rev Allerg Immunol 64, 392–411 (2023). https://doi.org/10.1007/s12016-022-08951-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-022-08951-z

Keywords

Navigation