Skip to main content
Log in

CD4+LAP+ and CD4+CD25+Foxp3+ Regulatory T Cells Induced by Nasal Oxidized Low-Density Lipoprotein Suppress Effector T Cells Response and Attenuate Atherosclerosis in ApoE−/− Mice

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Increasing studies have demonstrated that atherosclerosis is a chronic immunoinflammatory disease, and that oxidized low-density lipoprotein (oxLDL)-specific T cells contribute to the autoimmune process in atherosclerosis. Oral administration of oxLDL, which was identified as a candidate autoantigen in atherosclerosis, was shown to induce tolerance and suppress atherogenesis. However, the precise mechanisms of mucosal tolerance induction, in particular nasal tolerance, remain unknown. In this study, we explored the effect of nasal oxLDL on atherosclerosis as well as the cellular and molecular mechanisms leading to atheroprotective responses, and then found that nasal oxLDL drastically ameliorate the initiation (47.6 %, p < 0.001) and progression (21.1 %, p = 0.001) of atherosclerosis. Most importantly, a significant 35.8 % reduction of the progression of atherosclerosis was observed in the enhanced immunization group (p < 0.001). These effects were accompanied by a significant increase in CD4+ latency-associated peptide (LAP)+ regulatory T cells (Tregs) and CD4+CD25+Foxp3+ Tregs in spleens and cervical lymph nodes, together with increased transforming growth factor (TGF)-β production and suppressed T-helper cells type 1, 2, and 17 immune responses. Surprisingly, neutralization of TGF-β in vivo partially counteracted the protective effect of nasal oxLDL treatment, indicating that the presence of TGF-β was indispensable to CD4+LAP+ Tregs and CD4+CD25+Foxp3+ Tregs to acquire regulatory properties. Our studies suggest that CD4+LAP+ Tregs and CD4+CD25+Foxp3+ Tregs induced by nasal delivery of oxLDL can inhibit oxLDL-specific T cells response and ameliorate atherosclerosis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

LAP:

Latency-associated peptide

ApoE:

Apolipoprotein E

oxLDL:

Oxidized low-density lipoprotein

Hsp:

Heat stock protein

Treg:

Regulatory T cell

Th1, 2, 3, and 17:

T-helper type 1, 2, 3, and 17

Tr1:

Regulatory T-cell type1

Foxp3:

Forkhead box P3

CLN:

Cervical lymph node

Teff :

Effector T cell

AChR:

Acetylcholine receptor

References

  1. Gandhi R, Farez MF, Wang Y, Kozoriz D, Quintana FJ, Weiner HL. Cutting Edge: Human Latency-Associated Peptide+ T Cells: A Novel Regulatory T Cell Subset. J Immunol. 2010;184:4620–4.

    Article  PubMed  CAS  Google Scholar 

  2. Oida T, Zhang X, Goto M, Hachimura S, Totsuka M, Kaminogawa S, Weiner HL. CD4+CD25- T cells that express latency-associated peptide on the surface suppress CD4+CD45RBhigh-induced colitis by a TGF-beta-dependent mechanism. J Immunol. 2003;170:2516–22.

    PubMed  CAS  Google Scholar 

  3. Sasaki N, Yamashita T, Takeda M, Shinohara M, Nakajima K, Tawa H, Usui T, Hirata K. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation. 2009;120:1996–2005.

    Article  PubMed  CAS  Google Scholar 

  4. Ochi H, Abraham M, Ishikawa H, Frenkel D, Yang K, Basso AS, Wu H, Chen ML, Gandhi R, Miller A, Maron R, Weiner HL. Oral CD3-specific antibody suppresses autoimmune encephalomyelitis by inducing CD4+CD25-LAP+ T cells. Nat Med. 2006;12:627–35.

    Article  PubMed  CAS  Google Scholar 

  5. Ishikawa H, Ochi H, Chen ML, Frenkel D, Maron R, Weiner HL. Inhibition of autoimmune diabetes by oral administration of anti-CD3 monoclonal antibody. Diabetes. 2007;56:2103–9.

    Article  PubMed  CAS  Google Scholar 

  6. Wu HY, Center EM, Tsokos GC, Weiner HL. Suppression of murine SLE by oral anti-CD3: inducible CD4+CD25-LAP+ regulatory T cells control the expansion of IL-17+ follicular helper T cells. Lupus. 2009;18:586–96.

    Article  PubMed  CAS  Google Scholar 

  7. Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med. 1999;340:115–26.

    Article  PubMed  CAS  Google Scholar 

  8. Hansson GK, Libby P. The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol. 2006;6:508–19.

    Article  PubMed  CAS  Google Scholar 

  9. Tabas I, Williams KJ, Boren J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation. 2007;116:1832–44.

    Article  PubMed  CAS  Google Scholar 

  10. Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum JL. Innate and acquired immunity in atherogenesis. Na Med. 2002;8:1218–26.

    Article  CAS  Google Scholar 

  11. Maron R, Sukhova G, Faria AM, Hoffmann E, Mach F, Libby P, Weiner HL. Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation. 2002;106:1708–15.

    Article  PubMed  CAS  Google Scholar 

  12. George J, Yacov N, Breitbart E, Bangio L, Shaish A, Gilburd B, Shoenfeld Y, Harats D. Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance with beta 2-glycoprotein I. Cardiovas Res. 2004;62:603–9.

    Article  CAS  Google Scholar 

  13. van Puijvelde GH, Hauer AD, de Vos P, van den Heuvel R, van Herwijnen MJ, van der Zee R, van Eden W, van Berkel TJ, Kuiper J. Induction of oral tolerance to oxidized low-density lipoprotein ameliorates atherosclerosis. Circulation. 2006;114:1968–76.

    Article  PubMed  Google Scholar 

  14. van Puijvelde GH, van Es T, van Wanrooij EJ, Habets KL, de Vos P, van der Zee R, van Eden W, van Berkel TJ, Kuiper J. Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2677–83.

    Article  PubMed  Google Scholar 

  15. Xiong Q, Li J, Jin L, Liu J, Li T. Nasal immunization with heat shock protein 65 attenuates atherosclerosis and reduces serum lipids in cholesterol-fed wild-type rabbits probably through different mechanisms. Immunol Lett. 2009;125:40–5.

    Article  PubMed  CAS  Google Scholar 

  16. Tian J, Atkinson MA, Clare-Salzler M, Herschenifeld A, Forsthuber T, Lehmann PV, Kaufman DL. Nasal administration of glutamate decarboxylase (GAD65) peptides induces Th2 responses and prevents murine insulin-dependent diabetes. J Exp Med. 1996;183:1561–7.

    Article  PubMed  CAS  Google Scholar 

  17. Garcia G, Komagata Y, Slavin AJ, Maron R, Weiner HL. Suppression of collagen-induced arthritis by oral or nasal administration of type-II collagen. J Autoimmun. 1999;13:315–24.

    Article  PubMed  CAS  Google Scholar 

  18. Nussenblatt R. Orally and nasally induced tolerance studies in ocular inflammatory disease: guidance for future interventions. Ann N Y Acad Sci. 2004;1029:278–85.

    Article  PubMed  CAS  Google Scholar 

  19. Broere F, Wieten L, Klein Koerkamp EI, van Roon JA, Guichelaar T, Lafeber FP, van Eden W. Oral or nasal antigen induces regulatory T cells that suppress arthritis and proliferation of arthritogenic T cells in joint draining lymph nodes. J Immunol. 2008;181:899–906.

    PubMed  CAS  Google Scholar 

  20. Wu HY, Maron R, Tukpah AM, Weiner HL. Mucosal anti-CD3 monoclonal antibody attenuates collagen-induced arthritis that is associated with induction of LAP+ regulatory T cells and is enhanced by administration of an emulsome-based Th2-skewing adjuvant. J Immunol. 2010;185:3401–7.

    Article  PubMed  CAS  Google Scholar 

  21. Redgrave TG, Roberts DC, West CE. Separation of plasma lipoproteins by density-gradient ultracentrifugation. Anal Biochem. 1975;65:42–9.

    Article  PubMed  CAS  Google Scholar 

  22. Holven KB, Aukrust P, Holm T, Ose L, Nenseter MS. Folic acid treatment reduces chemokine release from peripheral blood mononuclear cells in hyperhomocysteinemic subjects. Arterioscler Thromb Vasc Biol. 2002;22:699–703.

    Article  PubMed  CAS  Google Scholar 

  23. Wolvers DA, Coenen-de Roo CJ, Mebius RE, van der Cammen MJ, Tirion F, Miltenburg AM, Kraal G. Intranasal induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39. J Immunol. 1999;162:1994–8.

    PubMed  CAS  Google Scholar 

  24. Cheng X, Chen Y, Xie JJ, Yao R, Yu X, Liao MY, Ding YJ, Tang TT, Liao YH, Cheng Y. Suppressive oligodeoxynucleotides inhibit atherosclerosis in ApoE(−/−) mice through modulation of Th1/Th2 balance. J Mol Cell Cardiol. 2008;45:168–75.

    Article  PubMed  CAS  Google Scholar 

  25. Chang MK, Binder CJ, Miller YI, Subbanagounder G, Silverman GJ, Berliner JA, Witztum JL. Apoptotic cells with oxidation-specific epitopes are immunogenic and proinflammatory. J Exp Med. 2004;200:1359–70.

    Article  PubMed  CAS  Google Scholar 

  26. Tang H, Zhong Y, Zhu Y, Zhao F, Cui X, Wang Z. Low responder T cell susceptibility to the suppressive function of regulatory T cells in patients with dilated cardiomyopathy. Heart. 2010;96:765–71.

    Article  PubMed  CAS  Google Scholar 

  27. Salonen JT, Ylä-Herttuala S, Yamamoto R, Butler S, Korpela H, Salonen R, Nyyssänen K, Palinski W, Witztum JL. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet. 1992;339:883–7.

    Article  PubMed  CAS  Google Scholar 

  28. Ylä-Herttuala S, Palinski W, Butler SW, Picard S, Steinberg D, Witztum JL. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994;14:32–40.

    Article  PubMed  Google Scholar 

  29. Stemme S, Faber B, Holm J, Wiklund O, Witztum JL, Hansson GK. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci USA. 1995;92:3893–7.

    Article  PubMed  CAS  Google Scholar 

  30. Mallat Z, Taleb S, Ait-Oufella H, Tedgui A. The role of adaptive T cell immunity in atherosclerosis. J Lipi Res. 2009;50:S364–9.

    Article  Google Scholar 

  31. Ma CG, Zhang GX, Xiao BG, Link J, Olsson T, Link H. Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor. J Neuroimmunol. 1995;58:51–60.

    Article  PubMed  CAS  Google Scholar 

  32. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hasson GK, Klatzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med. 2006;12:178–80.

    Article  PubMed  CAS  Google Scholar 

  33. Ji QW, Guo M, Zheng JS, Mao XB, Peng YD, Li SN, Liang ZS, Dai ZY, Mao Y, Zeng QT. Downregulation of T helper cell type 3 in patients with acute coronary syndrome. Arch Med Res. 2009;40:285–93.

    Article  PubMed  CAS  Google Scholar 

  34. Mallat Z, Gojova A, Brun V, Esposito B, Fournier N, Cottrez F, Tedgui A, Groux H. Induction of a regulatory T cell type 1 response reduces the development of atherosclerosis in apoE−/− mice. Circulation. 2003;108:1232–7.

    Article  PubMed  CAS  Google Scholar 

  35. Klingenberg R, Lebens M, Hermansson A, Fredrikson GN, Strodthoff D, Rudling M, Ketelhuth DF, Gerdes N, Holmgren J, Nilsson J, Hansson GK. Intranasal immunization with an ApoB-100 fusion protein induces antigen-specific regulatory T cells and reduces atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:946–52.

    Article  PubMed  CAS  Google Scholar 

  36. Chen ML, Yan BS, Bando Y, Kuchroo VK, Weiner HL. Latency-Associated Peptide Identifies a Novel CD4 + CD25 + Regulatory T Cell Subset with TGFβ-Mediated Function and Enhanced Suppression of Experimental Autoimmune Encephalomyelitis. J Immunol. 2008;180:7327–37.

    PubMed  CAS  Google Scholar 

  37. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol. 2005;6:1133–41.

    Article  PubMed  CAS  Google Scholar 

  38. Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-beta signaling in T cells accelerates atherosclerosis. J Clin Invest. 2003;112:1342–50.

    PubMed  CAS  Google Scholar 

  39. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    Article  PubMed  CAS  Google Scholar 

  40. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med. 1996;183:2669–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grant from National Natural Science Foundation of China (NO. 81070237). We thank Drs. Tony, Yanping Ding, Yidong Peng for assistance in this article.

Disclosures

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiutang Zeng.

Additional information

Yucheng Zhong, Xiang Wang, and Qingwei Ji contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Y., Wang, X., Ji, Q. et al. CD4+LAP+ and CD4+CD25+Foxp3+ Regulatory T Cells Induced by Nasal Oxidized Low-Density Lipoprotein Suppress Effector T Cells Response and Attenuate Atherosclerosis in ApoE−/− Mice. J Clin Immunol 32, 1104–1117 (2012). https://doi.org/10.1007/s10875-012-9699-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-012-9699-7

Keywords

Navigation