Skip to main content

Advertisement

Log in

OX40, OX40L and Autoimmunity: a Comprehensive Review

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

The tumour necrosis factor receptor OX40 (CD134) is activated by its cognate ligand OX40L (CD134L, CD252) and functions as a T cell co-stimulatory molecule. OX40-OX40L interactions have been proposed as a potential therapeutic target for treating autoimmunity. OX40 is expressed on activated T cells, and in the mouse at rest on regulatory T cells (Treg). OX40L is found on antigen-presenting cells, activated T cells and others including lymphoid tissue inducer cells, some endothelia and mast cells. Expression of both molecules is increased after antigen presentation occurs and also in response to multiple other pro-inflammatory factors including CD28 ligation, CD40L ligation and interferon-gamma signaling. Their interactions promote T cell survival, promote an effector T cell phenotype, promote T cell memory, tend to reduce regulatory function, increase effector cytokine production and enhance cell mobility. In some circumstances, OX40 agonism may be associated with increased tolerance, although timing with respect to antigenic stimulus is important. Further, recent work has suggested that OX40L blockade may be more effective than OX40 blockade in reducing autoimmunity. This article reviews the expression of OX40 and OX40L in health, the effects of their interactions and insights from their under- or over-expression. We then review OX40 and OX40L expression in human autoimmune disease, identified associations of variations in their genes (TNFRSF4 and TNFSF4, respectively) with autoimmunity, and data from animal models of human diseases. A rationale for blocking OX40-OX40L interaction in human autoimmunity is then presented along with commentary on the one trial of OX40L blockade in human disease conducted to date. Finally, we discuss potential problems with clinical use of OX40-OX40L directed pharmacotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Davidson A, Diamond B (2001) Autoimmune diseases. N Engl J Med 345(5):340–350. doi:10.1056/NEJM200108023450506

    Article  CAS  PubMed  Google Scholar 

  2. Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME (2010) Definition of human autoimmunity — autoantibodies versus autoimmune disease. Autoimmun Rev 9(5):A259–A266. doi:10.1016/j.autrev.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  3. Cooper GS, Stroehla BC (2003) The epidemiology of autoimmune diseases. Autoimmun Rev 2(3):119–125

    Article  PubMed  Google Scholar 

  4. Paterson DJ, Jefferies WA, Green JR, Brandon MR, Corthesy P, Puklavec M, Williams AF (1987) Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol 24(12):1281–1290

    Article  CAS  PubMed  Google Scholar 

  5. Mallett S, Fossum S, Barclay AN (1990) Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J 9(4):1063–1068

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Godfrey WR, Fagnoni FF, Harara MA, Buck D, Engleman EG (1994) Identification of a human OX-40 ligand, a costimulator of CD4+ T cells with homology to tumor necrosis factor. J Exp Med 180(2):757–762

    Article  CAS  PubMed  Google Scholar 

  7. Pippig SD, Pena-Rossi C, Long J, Godfrey WR, Fowell DJ, Reiner SL, Birkeland ML, Locksley RM, Barclay AN, Killeen N (1999) Robust B cell immunity but impaired T cell proliferation in the absence of CD134 (OX40). J Immunol 163(12):6520–6529

    CAS  PubMed  Google Scholar 

  8. Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229(1):173–191. doi:10.1111/j.1600-065X.2009.00766.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lane PJL, McConnell FM, Anderson G, Nawaf MG, Gaspal FM, Withers DR (2014) Evolving strategies for cancer and autoimmunity: back to the future. Front Immunol 5:154. doi:10.3389/fimmu.2014.00154

    PubMed  PubMed Central  Google Scholar 

  10. Takeda I, Ine S, Killeen N, Ndhlovu LC, Murata K, Satomi S, Sugamura K, Ishii N (2004) Distinct roles for the OX40-OX40 ligand interaction in regulatory and nonregulatory T cells. J Immunol 172(6):3580–3589

    Article  CAS  PubMed  Google Scholar 

  11. So T, Lee SW, Croft M (2008) Immune regulation and control of regulatory T cells by OX40 and 4-1BB. Cytokine Growth Factor Rev 19(3–4):253–262. doi:10.1016/j.cytogfr.2008.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calderhead DM, Buhlmann JE, van den Eertwegh AJ, Claassen E, Noelle RJ, Fell HP (1993) Cloning of mouse Ox40: a T cell activation marker that may mediate T-B cell interactions. J Immunol 151(10):5261–5271

    CAS  PubMed  Google Scholar 

  13. Munks MW, Mourich DV, Mittler RS, Weinberg AD, Hill AB (2004) 4-1BB and OX40 stimulation enhance CD8 and CD4 T-cell responses to a DNA prime, poxvirus boost vaccine. Immunology 112(4):559–566. doi:10.1111/j.1365-2567.2004.01917.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klinger M, Kim JK, Chmura SA, Barczak A, Erle DJ, Killeen N (2009) Thymic OX40 expression discriminates cells undergoing strong responses to selection ligands. J Immunol 182(8):4581–4589. doi:10.4049/jimmunol.0900010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaini J, Andarini S, Tahara M, Saijo Y, Ishii N, Kawakami K, Taniguchi M, Sugamura K, Nukiwa T, Kikuchi T (2007) OX40 ligand expressed by DCs costimulates NKT and CD4+ Th cell antitumor immunity in mice. J Clin Invest 117(11):3330–3338. doi:10.1172/jci32693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD (2013) Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res: Off J Am AssocCancer Res 19(5):1044–1053. doi:10.1158/1078-0432.ccr-12-2065

    Article  CAS  Google Scholar 

  17. Baumann R, Yousefi S, Simon D, Russmann S, Mueller C, Simon HU (2004) Functional expression of CD134 by neutrophils. Eur J Immunol 34(8):2268–2275. doi:10.1002/eji.200424863

    Article  CAS  PubMed  Google Scholar 

  18. Walker LS, Gulbranson-Judge A, Flynn S, Brocker T, Raykundalia C, Goodall M, Forster R, Lipp M, Lane P (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC Chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med 190(8):1115–1122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M (2001) OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15(3):445–455

    Article  CAS  PubMed  Google Scholar 

  20. Croft M (2010) Control of immunity by the TNFR-related molecule OX40 (CD134). Annu Rev Immunol 28:57–78. doi:10.1146/annurev-immunol-030409-101243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Redmond WL, Weinberg A (2008) Novel regulation of CD8 T cell-specific OX40 expression via an IL-2 and JAK3-dependent mechanism. FASEB J 22(1076):21

    Google Scholar 

  22. Vogel KU, Edelmann SL, Jeltsch KM, Bertossi A, Heger K, Heinz GA, Zoller J, Warth SC, Hoefig KP, Lohs C, Neff F, Kremmer E, Schick J, Repsilber D, Geerlof A, Blum H, Wurst W, Heikenwalder M, Schmidt-Supprian M, Heissmeyer V (2013) Roquin paralogs 1 and 2 redundantly repress the icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38(4):655–668. doi:10.1016/j.immuni.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  23. Gramaglia I, Weinberg AD, Lemon M, Croft M (1998) Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 161(12):6510–6517

    CAS  PubMed  Google Scholar 

  24. Sadler R, Bateman EA, Heath V, Patel SY, Schwingshackl PP, Cullinane AC, Ayers L, Ferry BL (2014) Establishment of a healthy human range for the whole blood “OX40” assay for the detection of antigen-specific CD4+ T cells by flow cytometry. Cytometry B Clin Cytom 86(5):350–361. doi:10.1002/cyto.b.21165

    Article  PubMed  CAS  Google Scholar 

  25. Tone Y, Kojima Y, Furuuchi K, Brady M, Yashiro-Ohtani Y, Tykocinski ML, Tone M (2007) OX40 gene expression is up-regulated by chromatin remodeling in its promoter region containing Sp1/Sp3, YY1, and NF-kappa B binding sites. J Immunol 179(3):1760–1767

    Article  CAS  PubMed  Google Scholar 

  26. Giacomelli R, Passacantando A, Perricone R, Parzanese I, Rascente M, Minisola G, Tonietti G (2001) T lymphocytes in the synovial fluid of patients with active rheumatoid arthritis display CD134-OX40 surface antigen. Clin Exp Rheumatol 19(3):317–320

    CAS  PubMed  Google Scholar 

  27. Stuber E, Buschenfeld A, Luttges J, Von Freier A, Arendt T, Folsch UR (2000) The expression of OX40 in immunologically mediated diseases of the gastrointestinal tract (celiac disease, Crohn’s disease, ulcerative colitis). Eur J Clin Investig 30(7):594–599

    Article  CAS  Google Scholar 

  28. Weinberg AD, Bourdette DN, Sullivan TJ, Lemon M, Wallin JJ, Maziarz R, Davey M, Palida F, Godfrey W, Engleman E, Fulton RJ, Offner H, Vandenbark AA (1996) Selective depletion of myelin-reactive T cells with the anti-OX-40 antibody ameliorates autoimmune encephalomyelitis. Nat Med 2(2):183–189

    Article  CAS  PubMed  Google Scholar 

  29. Marriott CL, Mackley EC, Ferreira C, Veldhoen M, Yagita H, Withers DR (2014) OX40 controls effector CD4(+) T-cell expansion, not follicular T helper cell generation in acute Listeria infection. Eur J Immunol 44(8):2437–2447. doi:10.1002/eji.201344211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Endl J, Rosinger S, Schwarz B, Friedrich SO, Rothe G, Karges W, Schlosser M, Eiermann T, Schendel DJ, Boehm BO (2006) Coexpression of CD25 and OX40 (CD134) receptors delineates autoreactive T-cells in type 1 diabetes. Diabetes 55(1):50–60

    Article  CAS  PubMed  Google Scholar 

  31. Linton PJ, Bautista B, Biederman E, Bradley ES, Harbertson J, Kondrack RM, Padrick RC, Bradley LM (2003) Costimulation via OX40L expressed by B cells is sufficient to determine the extent of primary CD4 cell expansion and Th2 cytokine secretion in vivo. J Exp Med 197(7):875–883. doi:10.1084/jem.20021290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karulf M, Kelly A, Weinberg AD, Gold JA (2010) OX40 ligand regulates inflammation and mortality in the innate immune response to sepsis. J Immunol 185(8):4856–4862. doi:10.4049/jimmunol.1000404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jenkins SJ, Perona-Wright G, Worsley AG, Ishii N, MacDonald AS (2007) Dendritic cell expression of OX40 ligand acts as a costimulatory, not polarizing, signal for optimal Th2 priming and memory induction in vivo. J Immunol 179(6):3515–3523

    Article  CAS  PubMed  Google Scholar 

  34. Kashiwakura J, Yokoi H, Saito H, Okayama Y (2004) T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J Immunol 173(8):5247–5257

    Article  CAS  PubMed  Google Scholar 

  35. Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176(4):2238–2248

    Article  CAS  PubMed  Google Scholar 

  36. Krimmer DI, Loseli M, Hughes JM, Oliver BG, Moir LM, Hunt NH, Black JL, Burgess JK (2009) CD40 and OX40 ligand are differentially regulated on asthmatic airway smooth muscle. Allergy 64(7):1074–1082. doi:10.1111/j.1398-9995.2009.01959.x

    Article  CAS  PubMed  Google Scholar 

  37. Byun M, Ma CS, Akcay A, Pedergnana V, Palendira U, Myoung J, Avery DT, Liu Y, Abhyankar A, Lorenzo L, Schmidt M, Lim HK, Cassar O, Migaud M, Rozenberg F, Canpolat N, Aydogan G, Fleckenstein B, Bustamante J, Picard C, Gessain A, Jouanguy E, Cesarman E, Olivier M, Gros P, Abel L, Croft M, Tangye SG, Casanova JL (2013) Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. J Exp Med 210(9):1743–1759. doi:10.1084/jem.20130592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Imura A, Hori T, Imada K, Ishikawa T, Tanaka Y, Maeda M, Imamura S, Uchiyama T (1996) The human OX40/gp34 system directly mediates adhesion of activated T cells to vascular endothelial cells. J Exp Med 183(5):2185–2195

    Article  CAS  PubMed  Google Scholar 

  39. Sato T, Ishii N, Murata K, Kikuchi K, Nakagawa S, Ndhlovu LC, Sugamura K (2002) Consequences of OX40-OX40 ligand interactions in Langerhans cell function: enhanced contact hypersensitivity responses in OX40L-transgenic mice. Eur J Immunol 32(11):3326–3335. doi:10.1002/1521-4141(200211)32:11<3326::aid-immu3326>3.0.co;2[-‐]9

    Article  CAS  PubMed  Google Scholar 

  40. Kim MY, Toellner K-M, White A, McConnell FM, Gaspal FMC, Parnell SM, Jenkinson E, Anderson G, Lane PJL (2006) Neonatal and adult CD4+ CD3- cells share similar gene expression profile, and neonatal cells up-regulate OX40 ligand in response to TL1A (TNFSF15). J Immunol 177(5):3074–3081

    Article  CAS  PubMed  Google Scholar 

  41. Soroosh P, Ine S, Sugamura K, Ishii N (2006) OX40-OX40 ligand interaction through T cell-T cell contact contributes to CD4 T cell longevity. J Immunol 176(10):5975–5987

    Article  CAS  PubMed  Google Scholar 

  42. Mendel I, Shevach EM (2006) Activated T cells express the OX40 ligand: requirements for induction and costimulatory function. Immunology 117(2):196–204. doi:10.1111/j.1365-2567.2005.02279.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang Y, Li M, Song M, Xu X, Xiong J, Yang X, Tan J, Bai Y (2008) Expression of OX40 ligand in microglia activated by IFN-gamma sustains a protective CD4+ T-cell response in vitro. Cell Immunol 251(2):86–92. doi:10.1016/j.cellimm.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  44. Kurche JS, Haluszczak C, McWilliams JA, Sanchez PJ, Kedl RM (2012) Type I IFN-dependent T cell activation is mediated by IFN-dependent dendritic cell OX40 ligand expression and is independent of T cell IFNR expression. J Immunol 188(2):585–593. doi:10.4049/jimmunol.1102550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krause P, Bruckner M, Uermosi C, Singer E, Groettrup M, Legler DF (2009) Prostaglandin E2 enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells. Blood 113(11):2451–2460. doi:10.1182/blood-2008-05-157123

    Article  CAS  PubMed  Google Scholar 

  46. Ito T, Wang YH, Duramad O, Hori T, Delespesse GJ, Watanabe N, Qin FX, Yao Z, Cao W, Liu YJ (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 202(9):1213–1223. doi:10.1084/jem.20051135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maxwell JR, Yadav R, Rossi RJ, Ruby CE, Weinberg AD, Aguila HL, Vella AT (2006) IL-18 bridges innate and adaptive immunity through IFN-gamma and the CD134 pathway. J Immunol 177(1):234–245

    Article  CAS  PubMed  Google Scholar 

  48. Wang Q, Chen Y, Xie F, Ge Y, Chen L, Wu H, Qu Q, Wang X, Zhang X (2006) Development of a sandwich ELISA for evaluating soluble OX40L (CD252) in human sera of different ages or with Graves’ disease. Cytokine 36(1–2):23–28. doi:10.1016/j.cyto.2006.10.006

    Article  PubMed  CAS  Google Scholar 

  49. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M (2000) The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165(6):3043–3050

    Article  CAS  PubMed  Google Scholar 

  50. Maxwell JR, Weinberg A, Prell RA, Vella AT (2000) Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol 164(1):107–112

    Article  CAS  PubMed  Google Scholar 

  51. Brocker T, Gulbranson-Judge A, Flynn S, Riedinger M, Raykundalia C, Lane P (1999) CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur J Immunol 29(5):1610–1616. doi:10.1002/(sici)1521-4141(199905)29:05<1610::aid-immu1610>3.0.co;2[-‐]8

    Article  CAS  PubMed  Google Scholar 

  52. Murata K, Nose M, Ndhlovu LC, Sato T, Sugamura K, Ishii N (2002) Constitutive OX40/OX40 ligand interaction induces autoimmune-like diseases. J Immunol 169(8):4628–4636

    Article  CAS  PubMed  Google Scholar 

  53. Dannull J, Nair S, Su Z, Boczkowski D, DeBeck C, Yang B, Gilboa E, Vieweg J (2005) Enhancing the immunostimulatory function of dendritic cells by transfection with mRNA encoding OX40 ligand. Blood 105(8):3206–3213. doi:10.1182/blood-2004-10-3944

    Article  CAS  PubMed  Google Scholar 

  54. Mestas J, Crampton SP, Hori T, Hughes CC (2005) Endothelial cell co-stimulation through OX40 augments and prolongs T cell cytokine synthesis by stabilization of cytokine mRNA. Int Immunol 17(6):737–747. doi:10.1093/intimm/dxh255

    Article  CAS  PubMed  Google Scholar 

  55. Xiao X, Balasubramanian S, Liu W, Chu X, Wang H, Taparowsky EJ, Fu YX, Choi Y, Walsh MC, Li XC (2012) OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol 13(10):981–990. doi:10.1038/ni.2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Z, Zhong W, Hinrichs D, Wu X, Weinberg A, Hall M, Spencer D, Wegmann K, Rosenbaum JT (2010) Activation of OX40 augments Th17 cytokine expression and antigen-specific uveitis. AM J Pathol 177(6):2912–2920. doi:10.2353/ajpath.2010.100353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ohshima Y, Yang LP, Uchiyama T, Tanaka Y, Baum P, Sergerie M, Hermann P, Delespesse G (1998) OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood 92(9):3338–3345

    CAS  PubMed  Google Scholar 

  58. Bansal-Pakala P, Jember AG, Croft M (2001) Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nat Med 7(8):907–912. doi:10.1038/90942

    Article  CAS  PubMed  Google Scholar 

  59. Mahmud SA, Manlove LS, Schmitz HM, Xing Y, Wang Y, Owen DL, Schenkel JM, Boomer JS, Green JM, Yagita H, Chi H, Hogquist KA, Farrar MA (2014) Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells. Nat Immunol 15(5):473–481. doi:10.1038/ni.2849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ruby CE, Yates MA, Hirschhorn-Cymerman D, Chlebeck P, Wolchok JD, Houghton AN, Offner H, Weinberg AD (2009) Cutting Edge: OX40 agonists can drive regulatory T cell expansion if the cytokine milieu is right. J Immunol 183(8):4853–4857. doi:10.4049/jimmunol.0901112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Xiao X, Gong W, Demirci G, Liu W, Spoerl S, Chu X, Bishop DK, Turka LA, Li XC (2012) New insights on OX40 in the control of T cell immunity and immune tolerance in vivo. J Immunol 188(2):892–901. doi:10.4049/jimmunol.1101373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. So T, Croft M (2007) Cutting edge: OX40 inhibits TGF-beta- and antigen-driven conversion of naive CD4 T cells into CD25 + Foxp3+ T cells. J Immunol 179(3):1427–1430

    Article  CAS  PubMed  Google Scholar 

  63. Voo KS, Bover L, Harline ML, Vien LT, Facchinetti V, Arima K, Kwak LW, Liu YJ (2013) Antibodies targeting human OX40 expand effector T cells and block inducible and natural regulatory T cell function. J Immunol 191(7):3641–3650. doi:10.4049/jimmunol.1202752

    Article  CAS  PubMed  Google Scholar 

  64. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205(4):825–839. doi:10.1084/jem.20071341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ito T, Wang YH, Duramad O, Hanabuchi S, Perng OA, Gilliet M, Qin FX, Liu YJ (2006) OX40 ligand shuts down IL-10-producing regulatory T cells. Proc Natl Acad Sci U S A 103(35):13138–13143. doi:10.1073/pnas.0603107103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Griseri T, Asquith M, Thompson C, Powrie F (2010) OX40 is required for regulatory T cell-mediated control of colitis. J Exp Med 207(4):699–709. doi:10.1084/jem.20091618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vu MD, Xiao X, Gao W, Degauque N, Chen M, Kroemer A, Killeen N, Ishii N, Li XC (2007) OX40 costimulation turns off Foxp3+ Tregs. Blood 110(7):2501–2510. doi:10.1182/blood-2007-01-070748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Prell RA, Evans DE, Thalhofer C, Shi T, Funatake C, Weinberg AD (2003) OX40-mediated memory T cell generation is TNF receptor-associated factor 2 dependent. J Immunol 171(11):5997–6005

    Article  CAS  PubMed  Google Scholar 

  69. Vu MD, Clarkson MR, Yagita H, Turka LA, Sayegh MH, Li XC (2006) Critical, but conditional, role of OX40 in memory T cell-mediated rejection. J Immunol 176(3):1394–1401

    Article  CAS  PubMed  Google Scholar 

  70. Soroosh P, Ine S, Sugamura K, Ishii N (2007) Differential requirements for OX40 signals on generation of effector and central memory CD4+ T cells. J Immunol 179(8):5014–5023

    Article  CAS  PubMed  Google Scholar 

  71. Kopf M, Ruedl C, Schmitz N, Gallimore A, Lefrang K, Ecabert B, Odermatt B, Bachmann MF (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL Responses after virus infection. Immunity 11(6):699–708

    Article  CAS  PubMed  Google Scholar 

  72. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M (2004) Costimulation of CD8 T cell responses by OX40. J Immunol 172(8):4821–4825

    Article  CAS  PubMed  Google Scholar 

  73. Salek-Ardakani S, Moutaftsi M, Crotty S, Sette A, Croft M (2008) OX40 drives protective vaccinia virus-specific CD8 T cells. J Immunol 181(11):7969–7976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kinnear G, Wood KJ, Marshall D, Jones ND (2010) Anti-OX40 prevents effector T-cell accumulation and CD8+ T-cell mediated skin allograft rejection. Transplantation 90(12):1265–1271. doi:10.1097/TP.0b013e3181fe5396

    Article  CAS  PubMed  Google Scholar 

  75. Moran AE, Kovacsovics-Bankowski M, Weinberg AD (2013) The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy. Curr Opin Immunol 25(2):230–237. doi:10.1016/j.coi.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  76. Buchan SL, Manzo T, Flutter B, Rogel A, Edwards N, Zhang L, Sivakumaran S, Ghorashian S, Carpenter B, Bennett CL, Freeman GJ, Sykes M, Croft M, Al-Shamkhani A, Chakraverty R (2014) OX40- and CD27-mediated costimulation synergizes with anti-PD-L1 blockade by forcing exhausted CD8+ T cells to exit quiescence. J Immunol 194(1):125–133. doi:10.4049/jimmunol.1401644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Obermeier F, Schwarz H, Dunger N, Strauch UG, Grunwald N, Scholmerich J, Falk W (2003) OX40/OX40L interaction induces the expression of CXCR5 and contributes to chronic colitis induced by dextran sulfate sodium in mice. Eur J Immunol 33(12):3265–3274. doi:10.1002/eji.200324124

    Article  CAS  PubMed  Google Scholar 

  78. Jourdan P, Vendrell JP, Huguet MF, Segondy M, Bousquet J, Pene J, Yssel H (2000) Cytokines and cell surface molecules independently induce CXCR4 expression on CD4+ CCR7+ human memory T cells. J Immunol 165(2):716–724

    Article  CAS  PubMed  Google Scholar 

  79. Kotani A, Hori T, Matsumura Y, Uchiyama T (2002) Signaling of gp34 (OX40 ligand) induces vascular endothelial cells to produce a CC Chemokine RANTES/CCL5. Immunol Lett 84(1):1–7

    Article  CAS  PubMed  Google Scholar 

  80. Higgins LM, McDonald SA, Whittle N, Crockett N, Shields JG, MacDonald TT (1999) Regulation of T cell activation in vitro and in vivo by targeting the OX40-OX40 ligand interaction: amelioration of ongoing inflammatory bowel disease with an OX40-IgG fusion protein, but not with an OX40 ligand-IgG fusion protein. J Immunol 162(1):486–493

    CAS  PubMed  Google Scholar 

  81. Shaikh RB, Santee S, Granger SW, Butrovich K, Cheung T, Kronenberg M, Cheroutre H, Ware CF (2001) Constitutive expression of LIGHT on T cells leads to lymphocyte activation, inflammation, and tissue destruction. J Immunol 167(11):6330–6337. doi:10.4049/jimmunol.167.11.6330

    Article  CAS  PubMed  Google Scholar 

  82. Robey RC, Mletzko S, Gotch FM (2010) The T-cell immune response against Kaposi’s sarcoma-associated herpesvirus. Adv Virol 2010(5):1–9. doi:10.1016/S1286-4579(99)80036-7

    Article  CAS  Google Scholar 

  83. Castellano LR, Filho DC, Argiro L, Dessein H, Prata A, Dessein A, Rodrigues V (2009) Th1/Th2 immune responses are associated with active cutaneous leishmaniasis and clinical cure is associated with strong interferon-γ production. HIM J 70(6):383–390. doi:10.1016/j.humimm.2009.01.007

    CAS  Google Scholar 

  84. Cunninghame Graham DS, Graham RR, Manku H, Wong AK, Whittaker JC, Gaffney PM, Moser KL, Rioux JD, Altshuler D, Behrens TW, Vyse TJ (2008) Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 40(1):83–89. doi:10.1038/ng.2007.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA, Sun X, Ortmann W, Kosoy R, Ferreira RC, Nordmark G, Gunnarsson I, Svenungsson E, Padyukov L, Sturfelt G, Jönsen A, Bengtsson AA, Rantapää-Dahlqvist S, Baechler EC, Brown EE, Alarcón GS, Edberg JC, Ramsey-Goldman R, McGwin G, Reveille JD, Vilá LM, Kimberly RP, Manzi S, Petri MA, Lee A, Gregersen PK, Seldin MF, Rönnblom L, Criswell LA, Syvänen A-C, Behrens TW, Graham RR (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41(11):1228–1233. doi:10.1038/ng.468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han J-W, Zheng H-F, Cui Y, Sun L-D, Ye D-Q, Hu Z, Xu J-H, Cai Z-M, Huang W, Zhao G-P, Xie H-F, Fang H, Lu Q-J, Xu J-H, Li X-P, Pan Y-F, Deng D-Q, Zeng F-Q, Ye Z-Z, Zhang X-Y, Wang Q-W, Hao F, Ma L, Zuo X-B, Zhou F-S, Du W-H, Cheng Y-L, Yang J-Q, Shen S-K, Li J, Sheng Y-J, Zuo X-X, Zhu W-F, Gao F, Zhang P-L, Guo Q, Li B, Gao M, Xiao F-L, Quan C, Zhang C, Zhang Z, Zhu K-J, Li Y, Hu D-Y, Lu W-S, Huang J-L, Liu S-X, Li H, Ren Y-Q, Wang Z-X, Yang C-J, Wang P-G, Zhou W-M, Lv Y-M, Zhang A-P, Zhang S-Q, Lin D, Li Y, Low HQ, Shen M, Zhai Z-F, Wang Y, Zhang F-Y, Yang S, Liu J-J, Zhang X-J (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41(11):1234–1237. doi:10.1038/ng.472

    Article  CAS  PubMed  Google Scholar 

  87. Sanchez E, Webb RD, Rasmussen A, Kelly JA, Riba L, Kaufman KM, Garcia-de la Torre I, Moctezuma JF, Maradiaga-Cecena MA, Cardiel-Rios MH, Acevedo E, Cucho-Venegas M, Garcia MA, Gamron S, Pons-Estel BA, Vasconcelos C, Martin J, Tusie-Luna T, Harley JB, Richardson B, Sawalha AH, Alarcon-Riquelme ME (2010) Genetically determined Amerindian ancestry correlates with increased frequency of risk alleles for systemic lupus erythematosus. Arthritis Rheum 62(12):3722–3729. doi:10.1002/art.27753

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhou XJ, Cheng FJ, Qi YY, Zhao MH, Zhang H (2013) A replication study from Chinese supports association between lupus-risk allele in TNFSF4 and renal disorder. BioMed Res Int 2013:597921. doi:10.1155/2013/597921

    PubMed  PubMed Central  Google Scholar 

  89. Lee YH, Song GG (2012) Associations between TNFSF4 and TRAF1-C5 gene polymorphisms and systemic lupus erythematosus: a meta-analysis. Hum Immunol 73(10):1050–1054. doi:10.1016/j.humimm.2012.07.044

    Article  CAS  PubMed  Google Scholar 

  90. Manku H, Langefeld CD, Guerra SG, Malik TH, Alarcon-Riquelme M, Anaya JM, Bae SC, Boackle SA, Brown EE, Criswell LA, Freedman BI, Gaffney PM, Gregersen PA, Guthridge JM, Han SH, Harley JB, Jacob CO, James JA, Kamen DL, Kaufman KM, Kelly JA, Martin J, Merrill JT, Moser KL, Niewold TB, Park SY, Pons-Estel BA, Sawalha AH, Scofield RH, Shen N, Stevens AM, Sun C, Gilkeson GS, Edberg JC, Kimberly RP, Nath SK, Tsao BP, Vyse TJ (2013) Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4. PLoS Genet 9(7), e1003554. doi:10.1371/journal.pgen.1003554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bossini-Castillo L, Broen JC, Simeon CP, Beretta L, Vonk MC, Ortego-Centeno N, Espinosa G, Carreira P, Camps MT, Navarrete N, Gonzalez-Escribano MF, Vicente-Rabaneda E, Rodriguez L, Tolosa C, Roman-Ivorra JA, Gomez-Gracia I, Garcia-Hernandez FJ, Castellvi I, Gallego M, Fernandez-Nebro A, Garcia-Portales R, Egurbide MV, Fonollosa V, de la Pena PG, Pros A, Gonzalez-Gay MA, Hesselstrand R, Riemekasten G, Witte T, Coenen MJ, Koeleman BP, Houssiau F, Smith V, de Keyser F, Westhovens R, De Langhe E, Voskuyl AE, Schuerwegh AJ, Chee MM, Madhok R, Shiels P, Fonseca C, Denton C, Claes K, Padykov L, Nordin A, Palm O, Lie BA, Airo P, Scorza R, van Laar JM, Hunzelmann N, Kreuter A, Herrick A, Worthington J, Radstake TR, Martin J, Rueda B (2011) A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large european cohort. Ann Rheum Dis 70(4):638–641. doi:10.1136/ard.2010.141838

    Article  CAS  PubMed  Google Scholar 

  92. Gourh P, Arnett FC, Tan FK, Assassi S, Divecha D, Paz G, McNearney T, Draeger H, Reveille JD, Mayes MD, Agarwal SK (2010) Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis 69(3):550–555. doi:10.1136/ard.2009.116434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Coustet B, Bouaziz M, Dieude P, Guedj M, Bossini-Castillo L, Agarwal S, Radstake T, Martin J, Gourh P, Elhai M, Koumakis E, Avouac J, Ruiz B, Mayes M, Arnett F, Hachulla E, Diot E, Cracowski JL, Tiev K, Sibilia J, Mouthon L, Frances C, Amoura Z, Carpentier P, Cosnes A, Meyer O, Kahan A, Boileau C, Chiocchia G, Allanore Y (2012) Independent replication and meta analysis of association studies establish TNFSF4 as a susceptibility gene preferentially associated with the subset of anticentromere-positive patients with systemic sclerosis. J Rheumat 39(5):997–1003. doi:10.3899/jrheum.111270

    Article  CAS  Google Scholar 

  94. Faraco J, Lin L, Kornum BR, Kenny EE, Trynka G, Einen M, Rico TJ, Lichtner P, Dauvilliers Y, Arnulf I, Lecendreux M, Javidi S, Geisler P, Mayer G, Pizza F, Poli F, Plazzi G, Overeem S, Lammers GJ, Kemlink D, Sonka K, Nevsimalova S, Rouleau G, Desautels A, Montplaisir J, Frauscher B, Ehrmann L, Hogl B, Jennum P, Bourgin P, Peraita-Adrados R, Iranzo A, Bassetti C, Chen WM, Concannon P, Thompson SD, Damotte V, Fontaine B, Breban M, Gieger C, Klopp N, Deloukas P, Wijmenga C, Hallmayer J, Onengut-Gumuscu S, Rich SS, Winkelmann J, Mignot E (2013) ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet 9(2), e1003270. doi:10.1371/journal.pgen.1003270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nordmark G, Kristjansdottir G, Theander E, Appel S, Eriksson P, Vasaitis L, Kvarnstrom M, Delaleu N, Lundmark P, Lundmark A, Sjowall C, Brun JG, Jonsson MV, Harboe E, Goransson LG, Johnsen SJ, Soderkvist P, Eloranta ML, Alm G, Baecklund E, Wahren-Herlenius M, Omdal R, Ronnblom L, Jonsson R, Syvanen AC (2011) Association of EBF1, FAM167A(C8orf13)-BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. Genes Immun 12(2):100–109. doi:10.1038/gene.2010.44

    Article  CAS  PubMed  Google Scholar 

  96. Wilde B, Dolff S, Cai X, Specker C, Becker J, Totsch M, Costabel U, Durig J, Kribben A, Tervaert JW, Schmid KW, Witzke O (2009) CD4 + CD25+ T-cell populations expressing CD134 and GITR are associated with disease activity in patients with Wegener’s granulomatosis. Nephrol Dial Transplant: Proc Eur Dial Assoc Eur Ren Assoc 24(1):161–171. doi:10.1093/ndt/gfn461

    Article  CAS  Google Scholar 

  97. Aten J, Roos A, Claessen N, Schilder-Tol EJ, Ten Berge IJ, Weening JJ (2000) Strong and selective glomerular localization of CD134 ligand and TNF receptor-1 in proliferative lupus nephritis. J American Soc Nephrol: JASN 11(8):1426–1438

    CAS  Google Scholar 

  98. Abo-Elenein A, Shaaban D, Gheith O (2008) Flowcytometric study of expression of perforin and CD134 in patients with systemic lupus erythematosus. Egypt J Immunol / Egypt Assoc Immunol 15(2):135–143

    Google Scholar 

  99. Farres MN, Al-Zifzaf DS, Aly AA, Abd Raboh NM (2011) OX40/OX40L in systemic lupus erythematosus: association with disease activity and lupus nephritis. Ann Saudi med 31(1):29–34. doi:10.4103/0256-4947.75775

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kshirsagar S, Binder E, Riedl M, Wechselberger G, Steichen E, Edelbauer M (2013) Enhanced activity of Akt in Teff cells from children with lupus nephritis is associated with reduced induction of tumor necrosis factor receptor-associated factor 6 and increased OX40 expression. Arthritis Rheum 65(11):2996–3006. doi:10.1002/art.38089

    Article  CAS  PubMed  Google Scholar 

  101. Mesquita Junior D, Cruvinel WM, Araujo JA, Salmazi KC, Kallas EG, Andrade LE et al (2014) Imbalanced expression of functional surface molecules in regulatory and effector T cells in systemic lupus erythematosus. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica 47(8):662–669

    Google Scholar 

  102. Patschan S, Dolff S, Kribben A, Durig J, Patschan D, Wilde B, Specker C, Philipp T, Witzke O (2006) CD134 expression on CD4+ T cells is associated with nephritis and disease activity in patients with systemic lupus erythematosus. Clin Exp Immunol 145(2):235–242. doi:10.1111/j.1365-2249.2006.03141.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhou YB, Ye RG, Li YJ, Xie CM (2009) Targeting the CD134-CD134L interaction using anti-CD134 and/or rhCD134 fusion protein as a possible strategy to prevent lupus nephritis. Rheumatol Int 29(4):417–425. doi:10.1007/s00296-008-0697-2

    Article  CAS  PubMed  Google Scholar 

  104. Bornsen L, Christensen JR, Ratzer R, Oturai AB, Sorensen PS, Sondergaard HB, Sellebjerg F (2012) Effect of natalizumab on circulating CD4+ T-cells in multiple sclerosis. PLoS One 7(11), e47578. doi:10.1371/journal.pone.0047578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Xiaoyan Z, Pirskanen R, Malmstrom V, Lefvert AK (2006) Expression of OX40 (CD134) on CD4+ T-cells from patients with myasthenia gravis. Clin Exp Immunol 143(1):110–116. doi:10.1111/j.1365-2249.2005.02955.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Szypowska A, Stelmaszczyk-Emmel A, Demkow U, Luczynski W (2014) High expression of OX40 (CD134) and 4-1BB (CD137) molecules on CD4(+)CD25(high) cells in children with type 1 diabetes. Adv Med Sci 59(1):39–43. doi:10.1016/j.advms.2013.07.003

    Article  PubMed  Google Scholar 

  107. Luczynski W, Stasiak-Barmuta A, Juchniewicz A, Wawrusiewicz-Kurylonek N, Ilendo E, Kos J, Kretowski A, Gorska M, Chyczewski L, Bossowski A (2010) The mRNA expression of pro- and anti-inflammatory cytokines in T regulatory cells in children with type 1 diabetes. Folia Histochem Cytobiol / Pol AcadSci, Pol Histochem Cytochem Soc 48(1):93–100. doi:10.2478/v10042-008-0113-5

    Google Scholar 

  108. Rajabi P, Alaee M, Mousavizadeh K, Samadikuchaksaraei A et al (2012) Altered expression of TNFSF4 and TRAF2 mRNAs in peripheral blood mononuclear cells in patients with systemic lupus erythematosus: association with atherosclerotic symptoms and lupus nephritis. Inflamma Res: Off J EurHistamine Res Soc 61(12):1347–1354. doi:10.1007/s00011-012-0535-6

    Article  CAS  Google Scholar 

  109. Komura K, Yoshizaki A, Kodera M, Iwata Y, Ogawa F, Shimizu K, Wayaku T, Yukami T, Murata M, Hasegawa M, Fujimoto M, Takehara K, Sato S (2008) Increased serum soluble OX40 in patients with systemic sclerosis. J Rheumat 35(12):2359–2362

    Article  CAS  Google Scholar 

  110. Laustsen JK, Rasmussen TK, Stengaard-Pedersen K, Horslev-Petersen K, Hetland ML, Ostergaard M, Junker P, Hvid M, Deleuran B (2014) Soluble OX40L is associated with presence of autoantibodies in early rheumatoid arthritis. Arthritis Res Ther 16(5):474. doi:10.1186/s13075-014-0474-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Li M, Yang Q, Zhang Y (2007) Effects of CD134 monoclonal antibody on hemolysis activities and expression of perforin in peripheral blood mononuclear cells of systemic lupus erythematosus patients. Hybridoma 26(4):191–200. doi:10.1089/hyb.2007.010

    Article  CAS  PubMed  Google Scholar 

  112. Wang Q, Zhang K, Ma Y, Zhang G (2013) Amplification of T cell autoreactivity by OX40/OX40L functional complex on peripheral CD4+ T cells in Graves’ disease. Front Immunol Conference Abstract: 15th International Congress of Immunology (ICI). doi: 10.3389/conf.fimmu.2013.02.01092

  113. Kaleeba JA, Offner H, Vandenbark AA, Lublinski A, Weinberg AD (1998) The OX-40 receptor provides a potent co-stimulatory signal capable of inducing encephalitogenicity in myelin-specific CD4+ T cells. Int Immunol 10(4):453–461

    Article  CAS  PubMed  Google Scholar 

  114. Wang XD, Wu TY (2008) The role of OX40 in CD4+ T cells cytokines production in ulcerative colitis. Zhonghua nei ke za zhi 47(1):15–18

    CAS  PubMed  Google Scholar 

  115. Zhang N, Li G, Xiao B, Liu Y, Cai Y, Sun X, Liang J (2010) Dynamic change OX40/OX40L mRNA in experimental allergic neuritis. Zhong nan da xue xue bao Yi xue ban = J Cent South UnivMedic Sci 35(9):964–968. doi:10.3969/j.issn.1672-7347.2010.09.011

    CAS  Google Scholar 

  116. Yu S, Medling B, Yagita H, Braley-Mullen H (2001) Characteristics of inflammatory cells in spontaneous autoimmune thyroiditis of NOD.H-2h4 mice. J Autoimmun 16(1):37–46. doi:10.1006/jaut.2000.0458

    Article  CAS  PubMed  Google Scholar 

  117. Saijo S, Asano M, Horai R, Yamamoto H, Iwakura Y (2002) Suppression of autoimmune arthritis in interleukin-1-deficient mice in which T cell activation is impaired due to low levels of CD40 ligand and OX40 expression on T cells. Arthritis Rheum 46(2):533–544

    Article  CAS  PubMed  Google Scholar 

  118. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A 100(10):5986–5990. doi:10.1073/pnas.1035999100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pakala SV, Bansal-Pakala P, Halteman BS, Croft M (2004) Prevention of diabetes in NOD mice at a late stage by targeting OX40/OX40 ligand interactions. Eur J Immunol 34(11):3039–3046. doi:10.1002/eji.200425141

    Article  CAS  PubMed  Google Scholar 

  120. Elmann A, Sharabi A, Dayan M, Zinger H, Ophir R, Mozes E (2007) Altered gene expression in mice with lupus treated with edratide, a peptide that ameliorates the disease manifestations. Arthritis Rheum 56(7):2371–2381. doi:10.1002/art.22736

    Article  CAS  PubMed  Google Scholar 

  121. Hong GU, Kim NG, Jeoung D, Ro JY (2013) Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via down-regulating migration and activation of mast cells. J Neuroimmunol 260(1–2):60–73. doi:10.1016/j.jneuroim.2013.04.002

    Article  CAS  PubMed  Google Scholar 

  122. Malmstrom V, Shipton D, Singh B, Al-Shamkhani A, Puklavec MJ, Barclay AN, Powrie F (2001) CD134L expression on dendritic cells in the mesenteric lymph nodes drives colitis in T cell-restored SCID mice. J Immunol 166(11):6972–6981

    Article  CAS  PubMed  Google Scholar 

  123. Yoshioka T, Nakajima A, Akiba H, Ishiwata T, Asano G, Yoshino S, Yagita H, Okumura K (2000) Contribution of OX40/OX40 ligand interaction to the pathogenesis of rheumatoid arthritis. Eur J Immunol 30(10):2815–2823. doi:10.1002/1521-4141(200010)30:10<2815::aid-immu2815>3.0.co;2-#

    Article  CAS  PubMed  Google Scholar 

  124. Saito K, Mori S, Date F, Ono M (2013) Sjogren’s syndrome-like autoimmune sialadenitis in MRL-Faslpr mice is associated with expression of glucocorticoid-induced TNF receptor-related protein (GITR) ligand and 4-1BB ligand. Autoimmunity 46(4):231–237. doi:10.3109/08916934.2012.757307

    Article  CAS  PubMed  Google Scholar 

  125. Boot EP, Koning GA, Storm G, Wagenaar-Hilbers JP, van Eden W, Everse LA, Wauben MH (2005) CD134 as target for specific drug delivery to auto-aggressive CD4+ T cells in adjuvant arthritis. Arthritis research & therapy 7(3):R604–R615. doi:10.1186/ar1722

    Article  CAS  Google Scholar 

  126. Pohl M, Kawakami N, Kitic M, Bauer J, Martins R, Fischer MT, Machado-Santos J, Mader S, Ellwart JW, Misu T, Fujihara K, Wekerle H, Reindl M, Lassmann H, Bradl M (2013) T cell-activation in neuromyelitis optica lesions plays a role in their formation. Acta Neuropathol Commun 1(1):85. doi:10.1186/2051-5960-1-85

    Article  PubMed  PubMed Central  Google Scholar 

  127. de Vos AF, Dick AD, Klooster J, Broersma L, McMenamin PG, Kijlstra A (2000) Analysis of the cellular infiltrate in the iris during experimental autoimmune encephalomyelitis. Invest Ophthalmol Vis Sci 41(10):3001–3010

    PubMed  Google Scholar 

  128. Weinberg AD, Lemon M, Jones AJ, Vainiene M, Celnik B, Buenafe AC, Culbertson N, Bakke A, Vandenbark AA, Offner H (1996) OX-40 antibody enhances for autoantigen specific V beta 8.2+ T cells within the spinal cord of Lewis rats with autoimmune encephalomyelitis. J Neurosci Res 43(1):42–49. doi:10.1002/jnr.490430105

    Article  CAS  PubMed  Google Scholar 

  129. Odobasic D, Kitching AR, Tipping PG, Holdsworth SR (2005) CD80 and CD86 costimulatory molecules regulate crescentic glomerulonephritis by different mechanisms. Kidney Int 68(2):584–594. doi:10.1111/j.1523-1755.2005.00436.x

    Article  CAS  PubMed  Google Scholar 

  130. Usui Y, Akiba H, Takeuchi M, Okunuki Y, Kezuka T, Hattori T, Takeuchi A, Okumura K, Usui M (2005) The role of OX40/OX40L pathway in murine experimental autoimmune uveoretinitis (EAU). Invest Ophthalmol Vis Sci 46(5):995

    Google Scholar 

  131. Ndhlovu LC, Ishii N, Murata K, Sato T, Sugamura K (2001) Critical involvement of OX40 ligand signals in the T cell priming events during experimental autoimmune encephalomyelitis. J Immunol 167(5):2991–2999

    Article  CAS  PubMed  Google Scholar 

  132. Nohara C, Akiba H, Nakajima A, Inoue A, Koh CS, Ohshima H, Yagita H, Mizuno Y, Okumura K (2001) Amelioration of experimental autoimmune encephalomyelitis with anti-OX40 ligand monoclonal antibody: a critical role for OX40 ligand in migration, but not development, of pathogenic T cells. J Immunol 166(3):2108–2115

    Article  CAS  PubMed  Google Scholar 

  133. Elyaman W, Kivisakk P, Reddy J, Chitnis T, Raddassi K, Imitola J, Bradshaw E, Kuchroo VK, Yagita H, Sayegh MH, Khoury SJ (2008) Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. AM J Pathol 173(2):411–422. doi:10.2353/ajpath.2008.080142

    Article  PubMed  PubMed Central  Google Scholar 

  134. Croft M (2009) The role of TNF superfamily members in T-cell function and diseases. Nat Rev Immunol 9(4):271–285. doi:10.1038/nri2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gwyer Findlay E, Danks L, Madden J, Cavanagh MM, McNamee K, McCann F, Snelgrove RJ, Shaw S, Feldmann M, Taylor PC, Horwood NJ, Hussell T (2014) OX40L blockade is therapeutic in arthritis, despite promoting osteoclastogenesis. Proc Natl Acad Sci U S A 111(6):2289–2294. doi:10.1073/pnas.1321071111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Gaspal F, Withers D, Saini M, Bekiaris V, McConnell FM, White A, Khan M, Yagita H, Walker LS, Anderson G, Lane PJ (2011) Abrogation of CD30 and OX40 signals prevents autoimmune disease in FoxP3-deficient mice. J Exp Med 208(8):1579–1584. doi:10.1084/jem.20101484

    Article  CAS  PubMed  Google Scholar 

  137. Mayer CT, Tian L, Hesse C, Kuhl AA, Swallow M, Kruse F, Thiele M, Gershwin ME, Liston A, Sparwasser T (2014) Anti-CD4 treatment inhibits autoimmunity in scurfy mice through the attenuation of co-stimulatory signals. J Autoimmun 50:23–32. doi:10.1016/j.jaut.2013.08.010

    Article  CAS  PubMed  Google Scholar 

  138. Bresson D, Fousteri G, Manenkova Y, Croft M, von Herrath M (2011) Antigen-specific prevention of type 1 diabetes in NOD mice is ameliorated by OX40 agonist treatment. J Autoimmun 37(4):342–351. doi:10.1016/j.jaut.2011.10.001

    Article  CAS  PubMed  Google Scholar 

  139. Wu X, Rosenbaum JT, Adamus G, Zhang GL, Duan J, Weinberg A, Zhang Z (2011) Activation of OX40 prolongs and exacerbates autoimmune experimental uveitis. Invest Ophthalmol Vis Sci 52(11):8520–8526. doi:10.1167/iovs.11-7664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chitnis T, Najafian N, Abdallah KA, Dong V, Yagita H, Sayegh MH, Khoury SJ (2001) CD28-independent induction of experimental autoimmune encephalomyelitis. J Clin Invest 107(5):575–583. doi:10.1172/jci11220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Weinberg AD, Wegmann KW, Funatake C, Whitham RH (1999) Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads to decreased T cell function and amelioration of experimental allergic encephalomyelitis. J Immunol 162(3):1818–1826

    CAS  PubMed  Google Scholar 

  142. Gauvreau GM, Boulet LP, Cockcroft DW, FitzGerald JM, Mayers I, Carlsten C, Laviolette M, Killian KJ, Davis BE, Larche M, Kipling C, Dua B, Mosesova S, Putnam W, Zheng Y, Scheerens H, McClintock D, Matthews JG, O’Byrne PM (2014) OX40L blockade and allergen-induced airway responses in subjects with mild asthma. Clin Exp Allergy : J Brit Soc Allergy and Clin Immunol 44(1):29–37. doi:10.1111/cea.12235

    Article  CAS  Google Scholar 

  143. Chen M, Xiao X, Demirci G, Li XC (2008) OX40 controls islet allograft tolerance in CD154 deficient mice by regulating FOXP3+ Tregs. Transplantation 85(11):1659–1662. doi:10.1097/TP.0b013e3181726987

    Article  CAS  PubMed  Google Scholar 

  144. Imura A, Hori T, Imada K, Kawamata S, Tanaka Y, Imamura S, Uchiyama T (1997) OX40 expressed on fresh leukemic cells from adult T-cell leukemia patients mediates cell adhesion to vascular endothelial cells: implication for the possible involvement of OX40 in leukemic cell infiltration. Blood 89(8):2951–2958

    CAS  PubMed  Google Scholar 

  145. Morris NP, Peters C, Montler R, Hu HM, Curti BD, Urba WJ, Weinberg AD (2007) Development and characterization of recombinant human Fc:OX40L fusion protein linked via a coiled-coil trimerization domain. Mol Immunol 44(12):3112–3121. doi:10.1016/j.molimm.2007.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Song Y, Margolles-Clark E, Bayer A, Buchwald P (2014) Small-molecule modulators of the OX40-OX40 ligand co-stimulatory protein-protein interaction. Br J Pharmacol 171(21):4955–4969. doi:10.1111/bph.12819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tuladhar R, Oghumu S, Dong R, Peterson A, Sharpe AH, Satoskar AR (2015) Ox40L–Ox40 pathway plays distinct roles in regulating Th2 responses but does not determine outcome of cutaneous leishmaniasis caused by Leishmania mexicana and Leishmania major. Exp Parasitol 148(C):49–55. doi:10.1016/j.exppara.2014.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD (2011) Science gone translational: the OX40 agonist story. Immunol Rev 244(1):218–231. doi:10.1111/j.1600-065X.2011.01069.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sharpe AH, Abbas AK (2006) T-cell costimulation--biology, therapeutic potential, and challenges. N Engl J Med 355(10):973–975. doi:10.1056/NEJMp068087

    Article  CAS  PubMed  Google Scholar 

  150. Smeets E, Meiler S, Lutgens E (2013) Lymphocytic tumor necrosis factor receptor superfamily co-stimulatory molecules in the pathogenesis of atherosclerosis. Curr Opin Lipidol 24(6):518–524. doi:10.1097/mol.0000000000000025

    Article  CAS  PubMed  Google Scholar 

  151. Souza HS, Elia CC, Spencer J, MacDonald TT (1999) Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut 45(6):856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Periolo N, Guillén L, Arruvito ML, Alegre NS, Niveloni SI, Hwang JH, Bai JC, Cherñavsky AC (2014) IL-15 controls T cell functions through its influence on CD30 and OX40 antigens in celiac disease. Cytokine 67(1):44–51. doi:10.1016/j.cyto.2014.01.004

    Article  CAS  PubMed  Google Scholar 

  153. Brugnoni D, Bettinardi A, Malacarne F, Airo P, Cattaneo R (1998) CD134/OX40 expression by synovial fluid CD4+ T lymphocytes in chronic synovitis. Br J Rheumatol 37(5):584–585

    Article  CAS  PubMed  Google Scholar 

  154. Passacantando A, Parzanese I, Rascente M, Petrucci C, Minisola G, Tonietti G (2006) Synovial fluid OX40T lymphocytes of patients with rheumatoid arthritis display a Th2/Th0 polarization. Int J Immunopathol Pharmacol 19(3):499–505

    CAS  PubMed  Google Scholar 

  155. Koo J, Kim S, Jung WJ, Lee YE, Song GG, Kim KS, Kim MY (2013) Increased lymphocyte infiltration in rheumatoid arthritis is correlated with an increase in LTi-like cells in synovial fluid. Immune Netw 13(6):240–248. doi:10.4110/in.2013.13.6.240

    Article  PubMed  PubMed Central  Google Scholar 

  156. Papadopoulos C, Terzis G, Papadimas GK, Manta P (2013) OX40-OX40L expression in idiopathic inflammatory myopathies. Anal Quant Cytopathol Histopath 35(1):17–26

    Google Scholar 

  157. Tateyama M, Fujihara K, Ishii N, Sugamura K, Onodera Y, Itoyama Y (2002) Expression of OX40 in muscles of polymyositis and granulomatous myopathy. J Neurol Sci 194(1):29–34

    Article  CAS  PubMed  Google Scholar 

  158. Bossowski A, Stasiak-Barmuta A, Urban M, Bossowska A (2005) Analysis of costimulatory molecules OX40/4-1BB (CD134/CD137) detection on chosen mononuclear cells in children and adolescents with Graves’ disease during methimazole therapy. J Pediatr Endocrinol Metab 18(12):1365–1372

    Article  CAS  PubMed  Google Scholar 

  159. Bossowski A, Stasiak-Barmuta A, Urban M, Rinderle C (2005) Relationship between OX40/4-1 BB (CD134/CD137) costimulatory molecules expression on T lymphocytes and stimulating and blocking autoantibodies to the TSH-receptor in children with Graves’ disease. Endokrynol Diabetol Chor Przemiany Materii Wieku Rozw: organ Polskiego Towarzystwa Endokrynologow Dzieciecych 11(3):133–140

    Google Scholar 

  160. Zhu R, Jiang J, Wang T, Xu T, Wu M, Liu C, Zhang X (2013) Expressions and clinical significance of OX40 and OX40L in peripheral blood of patients with primary Sjogren’s syndrome. Xi bao yu fen zi mian yi xue za zhi = Chin J Cell Mol immunol 29(8):862–865

    CAS  Google Scholar 

  161. Onodera J, Nagata T, Fujihara K, Ohuchi M, Ishii N, Sugamura K, Itoyama Y (2000) Expression of OX40 and OX40 ligand (gp34) in the normal and myasthenic thymus. Acta Neurol Scand 102(4):236–243

    Article  CAS  PubMed  Google Scholar 

  162. Giscombe R, Wang XB, Kakoulidou M, Lefvert AK (2006) Characterization of the expanded T-cell populations in patients with Wegener’s granulomatosis. J Intern Med 260(3):224–230. doi:10.1111/j.1365-2796.2006.01688.x

    Article  CAS  PubMed  Google Scholar 

  163. Qin W, Hongya W, Yongjing C, Fang X, Yue M, Xuekun Z, Xiaozhong L, Xueguang Z (2011) Increased OX40 and soluble OX40 ligands in children with Henoch-Schonlein purpura: association with renal involvement. Pediatr Allergy Immunol : Off Pub Eur Soc Pediatr Allergy Immunol 22(1 Pt 1):54–59. doi:10.1111/j.1399-3038.2010.01111.x

    Article  Google Scholar 

  164. Zhou YB, Ye RG, Li YJ, Xie CM, Wu YH (2008) Effect of anti-CD134L mAb and CTLA4Ig on ConA-induced proliferation, Th cytokine secretion, and anti-dsDNA antibody production in spleen cells from lupus-prone BXSB mice. Autoimmunity 41(5):395–404. doi:10.1080/08916930802002240

    Article  CAS  PubMed  Google Scholar 

  165. Totsuka T, Kanai T, Uraushihara K, Iiyama R, Yamazaki M, Akiba H, Yagita H, Okumura K, Watanabe M (2003) Therapeutic effect of anti-OX40L and anti-TNF-alpha MAbs in a murine model of chronic colitis. Am J Physiol Gastrointest Liver Physiol 284(4):G595–G603. doi:10.1152/ajpgi.00450.2002

    Article  CAS  PubMed  Google Scholar 

  166. Martin-Orozco N, Chen Z, Poirot L, Hyatt E, Chen A, Kanagawa O, Sharpe A, Mathis D, Benoist C (2003) Paradoxical dampening of anti-islet self-reactivity but promotion of diabetes by OX40 ligand. J Immunol 171(12):6954–6960

    Article  CAS  PubMed  Google Scholar 

  167. So T, Croft M (2013) Regulation of PI-3-kinase and Akt signaling in T lymphocytes and other cells by TNFR family molecules. Front Immunol 4:139. doi:10.3389/fimmu.2013.00139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kawamata S, Hori T, Imura A, Takaori-Kondo A, Uchiyama T (1998) Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. J Biol Chem 273(10):5808–5814

    Article  CAS  PubMed  Google Scholar 

  169. Boettler T, Choi YS, Salek-Ardakani S, Cheng Y, Moeckel F, Croft M, Crotty S, von Herrath M (2013) Exogenous OX40 stimulation during lymphocytic choriomeningitis virus infection impairs follicular Th cell differentiation and diverts CD4 T cells into the effector lineage by upregulating Blimp-1. J Immunol 191(10):5026–5035. doi:10.4049/jimmunol.1300013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G (1997) Expression and function of OX40 ligand on human dendritic cells. J Immunol 159(8):3838–3848

    CAS  PubMed  Google Scholar 

  171. Stuber E, Strober W (1996) The T cell-B cell interaction via OX40-OX40L is necessary for the T cell-dependent humoral immune response. J Exp Med 183(3):979–989

    Article  CAS  PubMed  Google Scholar 

  172. Stuber E, Neurath M, Calderhead D, Fell HP, Strober W (1995) Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 2(5):507–521

    Article  CAS  PubMed  Google Scholar 

  173. Piconese S, Gri G, Tripodo C, Musio S, Gorzanelli A, Frossi B, Pedotti R, Pucillo CE, Colombo MP (2009) Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114(13):2639–2648. doi:10.1182/blood-2009-05-220004

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwilym J. Webb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webb, G.J., Hirschfield, G.M. & Lane, P.J.L. OX40, OX40L and Autoimmunity: a Comprehensive Review. Clinic Rev Allerg Immunol 50, 312–332 (2016). https://doi.org/10.1007/s12016-015-8498-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8498-3

Keywords

Navigation