Skip to main content

Advertisement

Log in

The Davydov/Scott Model for Energy Storage and Transport in Proteins

  • Review
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The current status of the Davydov/Scott model for energy transfer in proteins is reviewed. After a brief introduction to the theoretical framework and to the basic results, the problems of finite temperature dynamics and of the full quantum and mixed quantum-classical approximations are described, as well as recent results obtained within each of these approximations. A short survey of experimental evidence in support of the Davydov/Scott model is made and absorption spectra are calculated that show the same temperature dependence as that measured in crystalline acetanilide. Future applications of the Davydov/Scott model to protein folding and function and to misfolding diseases are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cruzeiro, L.: Why are proteins with glutamine- and asparagine-rich regions associated with protein misfolding diseases? J. Phys.: Condens. Matter 17, 7833–7844 (2005)

    Article  ADS  Google Scholar 

  2. McClare, C.W.F.: Resonance in bioenergetics. Ann. N. Y. Acad. Sci. 227, 74–97 (1974)

    Article  ADS  Google Scholar 

  3. Turin, L.: Colin McClare (1937–1977): a tribute. J. Biol. Phys. doi:10.1007/s10867-009-9131-6

  4. Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theor. Biol. 38, 559–569 (1973)

    Article  Google Scholar 

  5. Davydov, A.S.: Solitons in Molecular Systems, 2nd edn. Kluwer Academic, Dordrecht (1991)

    Google Scholar 

  6. Scott, A.: The Davydov soliton revisited. Phys. Rep. 217, 1–67 (1992)

    Article  ADS  Google Scholar 

  7. Krimm, S., Bandekar, J.: Vibrational Spectroscopy and conformation of peptides, polypeptides and proteins. Adv. Protein Chem. 38, 181–364 (1986)

    Article  Google Scholar 

  8. Cruzeiro, L.: Influence of the nonlinearity and dipole strength on the amide I band of protein α-helices. J. Chem. Phys. 123(23), 234909 (2005)

    Article  ADS  Google Scholar 

  9. Cruzeiro-Hansson, L., Takeno, S.: Davydov model: the quantum, mixed quantum-classical and full classical systems. Phys. Rev. E 56, 894–906 (1997)

    Article  ADS  Google Scholar 

  10. Scott, A.C.: Dynamics of Davydov solitons. Phys. Rev. A 26, 578–595 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  11. Hyman, J.M., McLaughlin, D.W., Scott, A.C.: On Davydov’s alpha-helix solitons. Physica D 3, 23–44 (1981)

    Article  ADS  Google Scholar 

  12. Cruzeiro-Hansson, L., Kenkre, V.M.: Localized versus delocalized ground states of the semiclassical Holstein Hamiltonian. Phys. Lett. A 190, 59–64 (1994)

    Article  ADS  Google Scholar 

  13. Brizhik, L., Cruzeiro-Hansson, L., Eremko, A.: Influence of electromagnetic radiation on molecular solitons. J. Biol. Phys. 24, 19–39 (1998)

    Article  Google Scholar 

  14. Brizhik, L., Cruzeiro-Hansson, L., Eremko, A.: Electromagnetic radiation influence on nonlinear charge and energy transfer in biosystems. J. Biol. Phys. 24, 223–232 (1999)

    Article  Google Scholar 

  15. Brizhik, L., Eremko, A., Piette, B., Zakrzewski, W.: Solitons in α-helical proteins. Phys. Rev. E 70(3), 031914, 1–16 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  16. Brizhik L., Eremko A., Piette B., Zakrzewski, W.: Charge and energy transfer by solitons in low-dimensional nanosystems with helical structure. Chem. Phys. 324, 259–266 (2006)

    Article  ADS  Google Scholar 

  17. Pouthier, V.: Two-vibron bound states in alpha-helix proteins: the interplay between the intramolecular anharmonicity and the strong vibron-phonon coupling. Phys. Rev. E 68(2), 021909 (2003)

    Article  ADS  Google Scholar 

  18. Pouthier, V., Falvo, C.: Relaxation channels of two-vibron bound states in alpha-helix proteins. Phys. Rev. E 69(4), 041906 (2004)

    Article  ADS  Google Scholar 

  19. Falvo, C., Pouthier, V.: Vibron–polaron in alpha-helices. I. Single-vibron states. J. Chem. Phys. 123(18), 184709 (2005)

    Article  ADS  Google Scholar 

  20. Falvo, C., Pouthier, V.: Vibron–polaron in alpha-helices. I. Two-vibron states. J. Chem. Phys. 123(18), 184710, 1–12 (2005)

    Article  ADS  Google Scholar 

  21. Kenkre, V.M., Giuggioli, L.: Study of some approximation schemes in the spin-boson problem. Chem. Phys. 296, 135–148 (2004)

    Article  Google Scholar 

  22. Cuevas, J., Silva, P.A.S., Romero, F.R., Cruzeiro, L.: Dynamics of the Davydov–Scott monomer in a thermal bath: comparison of the full quantum and semiclassical approaches. Phys. Rev. E 76(1), 011907, 1–8 (2007)

    Article  ADS  Google Scholar 

  23. Davydov, A.S.: Soliton motion in a one dimensional molecular lattice with account taken of thermal oscillations. Sov. Phys. JETP 51, 397–400 (1980)

    ADS  Google Scholar 

  24. Lomdahl, P.L., Kerr, W.C.: Do Davydov Solitons exist at 300 K? Phys. Rev. Lett. 55, 1235–1238 (1985)

    Article  ADS  Google Scholar 

  25. Wang, X., Brown, D.W., Lindenberg, K.: Quantum Monte Carlo simulation of the Davydov model. Phys. Rev. Lett. 62, 1796–1799 (1989)

    Article  ADS  Google Scholar 

  26. Cruzeiro-Hansson, L.: Dynamics of a mixed quantum-classical system at finite temperature. Europhys. Lett. 33, 655–659 (1996)

    Article  ADS  Google Scholar 

  27. Cruzeiro-Hansson, L.: The Davydov Hamiltonian leads to stochastic energy transfer in proteins. Phys. Lett. A 223, 383–388 (1996)

    Article  ADS  Google Scholar 

  28. Edler, J., Hamm, P., Scott, A.C.: Femtosecond study of self-trapped vibrational excitons in crystalline acetanilide. Phys. Rev. Lett. 88, 067403.1–067403.4 (2002)

    Article  ADS  Google Scholar 

  29. Edler, J., Hamm, P.: Self-trapping of the amide I band in a peptide model crystal. J. Chem. Phys. 117, 2415–2424 (2002)

    Article  ADS  Google Scholar 

  30. Edler, J., Hamm, P.: Two-dimensional vibrational spectroscopy of the amide I band of crystalline acetanilide: Fermi resonance, conformational substates, or vibrational self-trapping? J. Chem. Phys. 119, 2709–2715 (2003)

    Article  ADS  Google Scholar 

  31. Edler, J., Hamm, P.: Spectral response of crystalline acetanilide and N-methylacetamide: vibrational self-trapping in hydrogen-bonded crystals. Phys. Rev. B 69, 214301 (2004)

    Article  ADS  Google Scholar 

  32. Hamm, P.: Femtosecond IR pump-probe spectroscopy of energy localization in protein models and model proteins. J. Biol. Phys. doi:10.1007/s10867-009-9126-3

  33. Edler, J., Pfister, R., Pouthier, V., Falvo, C., Hamm, P.: Direct observation of self-trapped vibrational states in α-helices. Phys. Rev. Lett. 93(10), 106405, 1–4 (2004)

    Article  ADS  Google Scholar 

  34. Xie, A., van der Meer, L., Hoff, W., Austin, R.H.: Long-lived amide I vibratrional modes in Myoglobin. Phys. Rev. Lett. 84, 5435–5438 (2000)

    Article  ADS  Google Scholar 

  35. Xie, A., van der Meer, A.F.G, Austin, R.H.: Excited-state lifetimes of far-infrared collective modes in proteins. Phys. Rev. Lett. 28, 147–154 (2002)

    Google Scholar 

  36. Austin, R.H., Xie, A., van der Meer, L., Shinn, M., Neil, G.: Self-trapped states in proteins. Nucl. Instrum. Methods Phys. Res. 507, 561–563 (2003)

    Article  ADS  Google Scholar 

  37. Fang, C., Senes, A., Cristian, L., DeGrado, W.F., Hochstrasser, R.M.: Amide vibrations are delocalized across the hydrophobic interface of a transmembrane helix dimer. Proc. Natl. Acad. Sci. U. S. A. 103(45), 16740–16745 (2006)

    Article  ADS  Google Scholar 

  38. Cruzeiro, L.: Influence of the sign of the coupling on the temperature dependence of optical properties of one dimensional exciton models. J. Phys. B: At. Mol. Opt. Phys. 41(19), 195401 (2008)

    Article  ADS  Google Scholar 

  39. Levinthal, C.: Are there pathways for protein folding? J. Chim. Phys. 65, 44–45 (1968)

    Google Scholar 

  40. Anfinsen, C.B.: Principles that govern the folding of protein chains. Science 181, 223–233 (1973)

    Article  ADS  Google Scholar 

  41. Bryngelson, J.D., Onuchic, J.N., Socci, N.D., Wolynes, P.G.: Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21, 167–195 (1995)

    Article  Google Scholar 

  42. Onuchic, J.N., Luthey-Schulten, Z., Wolynes, P.G.: Theory of protein folding: the energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545–600 (1997)

    Article  Google Scholar 

  43. Wolynes, P.G.: Recent successes of the energy landscape theory of protein folding and function. Q. Rev. Biophys. 38, 405–410 (2005)

    Article  Google Scholar 

  44. Karplus, M., Kuriyan, J.: Molecular dynamics and protein function. Proc. Natl. Acad. Sci. U. S. A. 102, 6679–6685 (2005)

    Article  ADS  Google Scholar 

  45. Callaway, E.: The shape of protein structures to come. Nature 449, 765 (2007)

    Article  Google Scholar 

  46. Prusiner, S.B.: Novel proteinaceous infectious particles cause scrapie. Science 216, 136–144 (1982)

    Article  ADS  Google Scholar 

  47. Prusiner, S.B., McCarty, M.: Discovering DNA encodes heredity and prions are infectious proteins. Annu. Rev. Genet. 40, 25–45 (2006)

    Article  Google Scholar 

  48. Baker, D., Sohl, J.L., Agard, D.A.: A protein-folding reaction under kinetic control. Nature 356, 263–265 (1992)

    Article  ADS  Google Scholar 

  49. Sohl, J.L., Jaswal, S.S., Agard, D.A.: Unfolded conformations of alpha-lytic protease are more stable than its native state. Nature 395, 817–819 (1998)

    Article  ADS  Google Scholar 

  50. Tsutsui, Y., Liu, L., Gershenson, A., Wintrode, P.L.: The conformational dynamics of a metastable serpin studied by hydrogen exchange and mass spectroscopy. Biochemistry 45, 6561–6569 (2006)

    Article  Google Scholar 

  51. Lazaridis, T., Karplus, M.: “New view” of protein folding reconciled with the old through multiple unfolding simulations. Science 278, 1928–1931 (1997)

    Article  ADS  Google Scholar 

  52. Englander, S.W.: Protein folding intermediates and pathways studied by hydrogen exchange. Annu. Revs. Biophys. Biomol. Struct. 29, 213–238 (2000)

    Article  Google Scholar 

  53. Brockwell, D.J., Radford, S.E.: Intermediates: ubiquitous species on folding energy landscapes? Curr. Opin. Struct. Biol. 17, 30–37 (2007)

    Article  Google Scholar 

  54. Roder, H., Colón, W.: Kinetic role of early intermediates in protein folding. Curr. Opin. Struck. Biol. 7, 15–28 (1997)

    Article  Google Scholar 

  55. Fitzkee, N.C., Rose, G.D.: Reassessing random-coil statistics in unfolded proteins. Proc. Natl. Acad. Sci. U. S. A. 101(34), 12497–12502 (2004)

    Article  ADS  Google Scholar 

  56. Cruzeiro-Hansson, L., Silva, P.A.S.: Protein folding: thermodynamic versus kinetic control. J. Biol. Phys. 27, S6–S9 (2001)

    Google Scholar 

  57. Silva, P.A.S., Cruzeiro-Hansson, L.: A reduced set of exact equations of motion for a non-number-conserving Hamiltonian. Phys. Lett. A 315/6, 447–451 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  58. Silva, P.A.S., Cruzeiro, L.: Dynamics of a nonconserving Davydov monomer. Phys. Rev. E 74(2), 021920, 1–13 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  59. Pouthier, V.: Energy relaxation of the amide-I mode in hydrogen-bonded peptide units: a route to conformational change. J. Chem. Phys. 128(6), 065101 (2008)

    Article  ADS  Google Scholar 

  60. Cruzeiro, L.: Protein’s multi-funnel energy landscape and misfolding diseases. J. Phys. Org. Chem. 21, 549–554 (2008)

    Article  Google Scholar 

  61. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheatham, T.E. III, Ross, W.S., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Tsui, V., Radmer, R.J., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P.K., Kollman, P.A.: AMBER 6. University of California, San Francisco (1999)

    Google Scholar 

Download references

Acknowledgements

This article is dedicated to Al Scott, mentor, friend and, together with McClare and Davydov, a pioneer of the VES hypothesis. This work was funded in part by the Foundation for Science and Technology (FCT, Portugal) and by POCI 2010 and the European Community Fund, FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Cruzeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruzeiro, L. The Davydov/Scott Model for Energy Storage and Transport in Proteins. J Biol Phys 35, 43–55 (2009). https://doi.org/10.1007/s10867-009-9129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-009-9129-0

Keywords

Navigation