Skip to main content

Locating and Navigating Energy Transport Networks in Proteins

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2253))

  • 853 Accesses

Abstract

We review computational methods to locate energy transport networks in proteins that are based on the calculation of local energy diffusion in nanoscale systems. As an illustrative example, we discuss energy transport networks computed for the homodimeric hemoglobin from Scapharca inaequivalvis, where channels for facile energy transport, which include the cluster of water molecules at the interface of the globules, have been found to lie along pathways that experiments reveal are important in allosteric processes. We also review recent work on master equation simulations to model energy transport dynamics, including efforts to relate rate constants in the master equation to protein structural dynamics. Results for apomyoglobin involving relations between fluctuations in the length of hydrogen bonds and the energy flux between them are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leitner DM, Straub JE (2009) Proteins: energy, heat and signal flow. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  2. Nguyen PH, Hamm P, Stock G (2009) Nonequilibrium molecular dynamics simulation of photoinduced energy flow in peptides: theory meets experiment. In: Leitner DM, Straub JE (eds) Proteins: energy, heat and signal flow. CRC Press, Boca Raton, FL, pp 149–168

    Google Scholar 

  3. Hassan S, Schade M, Shaw CP, Levy P, Hamm P (2014) Response of villin headpiece-capped gold nanoparticles to ultrafast laser heating. J Phys Chem B 118:7954–7962

    Article  CAS  PubMed  Google Scholar 

  4. Botan V, Backus EHG, Pfister R, Moretto A, Crisma M, Toniolo C, Nguyen PH, Stock G, Hamm P (2007) Energy transport in peptide helices. Proc Natl Acad Sci U S A 104:12749–12754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Backus EHG, Nguyen PH, Botan V, Pfister R, Moretto A, Crisma M, Toniolo C, Stock G, Hamm P (2008) Energy transport in peptide helices: a comparison between high- and low-energy excitations. J Phys Chem B 112:9091–9099

    Article  CAS  PubMed  Google Scholar 

  6. Backus EHG, Nguyen PH, Botan V, Moretto A, Crisma M, Toniolo C, Zerbe O, Stock G, Hamm P (2008) Structural flexibility of a helical peptide regulates vibrational energy transport properties. J Phys Chem B 112:15487–15492

    Article  CAS  PubMed  Google Scholar 

  7. Backus EH, Bloem R, Pfister R, Moretto A, Crisma M, Toniolo C, Hamm P (2009) Dynamical transition in a small helical peptide and its implication for vibrational energy transport. J Phys Chem B 113:13405–13409

    Article  CAS  PubMed  Google Scholar 

  8. Kondoh M, Mizuno M, Mizutani Y (2016) Importance of atomic contacts in vibrational energy flow in proteins. J Phys Chem Lett 7:1950–1954

    Article  CAS  PubMed  Google Scholar 

  9. Fujii N, Mizuno M, Mizutani Y (2011) Direct observation of vibrational energy flow in cytochrome c. J Phys Chem B 115:13057–13064

    Article  CAS  PubMed  Google Scholar 

  10. Fujii N, Mizuno M, Ishikawa H, Mizutani Y (2014) Observing vibrational energy flow in a protein with the spatial resolution of a single amino acid residue. J Phys Chem Lett 5:3269–3273. https://doi.org/10.1021/jz501882h

    Article  CAS  PubMed  Google Scholar 

  11. Sagnella DE, Straub JE, Thirumalai D (2000) Timescales and pathways for kinetic energy relaxation in solvated proteins: application to carbonmonoxy myoglobin. J Chem Phys 113:7702–7711

    Article  CAS  Google Scholar 

  12. Bu L, Straub JE (2003) Simulating vibrational energy flow in proteins: relaxation rate and mechanism for heme cooling in cytochrome c. J Phys Chem B 107:12339–12345

    Article  CAS  Google Scholar 

  13. Ishikura T, Iwata Y, Hatano T, Yamato T (2015) Energy exchange network of inter-residue interactions within a thermally fluctuating protein: a computational study. J Comput Chem 36:1709–1718. https://doi.org/10.1002/jcc.23989

    Article  CAS  PubMed  Google Scholar 

  14. Ishikura T, Yamato T (2006) Energy transfer pathways relevant for long-range intramolecular signaling of photosensory protein revealed by microscopic energy conductivity analysis. Chem Phys Lett 432:533–537

    Article  CAS  Google Scholar 

  15. Xu Y, Leitner DM (2014) Vibrational energy flow through the green fluorescent protein-water interface: communication maps and thermal boundary conductance. J Phys Chem B 118:7818–7826

    Article  CAS  PubMed  Google Scholar 

  16. Xu Y, Leitner DM (2014) Communication maps of vibrational energy transport in photoactive yellow protein. J Phys Chem A 118:7280–7287

    Article  CAS  PubMed  Google Scholar 

  17. Leitner DM, Buchenberg S, Brettel P, Stock G (2015) Vibrational energy flow in the villin headpiece subdomain: master equation simulations. J Chem Phys 142:075101

    Article  PubMed  CAS  Google Scholar 

  18. Agbo JK, Gnanasekaran R, Leitner DM (2014) Communication maps: exploring energy transport through proteins and water. Isr J Chem 54:1065–1073

    Article  CAS  Google Scholar 

  19. Leitner DM (2009) Frequency resolved communication maps for proteins and other nanoscale materials. J Chem Phys 130:195101

    Article  PubMed  CAS  Google Scholar 

  20. Gnanasekaran R, Agbo JK, Leitner DM (2011) Communication maps computed for homodimeric hemoglobin: computational study of water-mediated energy transport in proteins. J Chem Phys 135:065103

    Article  PubMed  CAS  Google Scholar 

  21. Agbo JK, Xu Y, Zhang P, Straub JE, Leitner DM (2014) Vibrational energy flow across heme-cytochrome c and cytochrome c-water interfaces. Theor Chem Accounts 133:1504

    Article  CAS  Google Scholar 

  22. Leitner DM (2016) Water-mediated energy dynamics in a homodimeric hemoglobin. J Phys Chem B 120:4019–4027

    Article  CAS  PubMed  Google Scholar 

  23. Buchenberg S, Leitner DM, Stock G (2016) Scaling rules for vibrational energy transport in proteins. J Phys Chem Lett 7:25–30

    Article  CAS  PubMed  Google Scholar 

  24. Martínez L, Figueira ACM, Webb P, Polikarpov I, Skaf MS (2011) Mapping the intramolecular vibrational energy flow in proteins reveals functionally important residues. J Phys Chem Lett 2:2073–2078

    Article  CAS  Google Scholar 

  25. Leitner DM, Yamato T (2018) Mapping energy transport networks in proteins. In: Parrill AL, Lipkowitz KB (eds) Rev. Comp. Chem, vol 31. Wiley, New York, pp 63–114

    Google Scholar 

  26. Leitner DM (2013) Thermal boundary conductance and rectification in molecules. J Phys Chem B 117:12820–12828

    Article  CAS  PubMed  Google Scholar 

  27. Rubtsova NI, Rubtsov IV (2015) Vibrational energy transport in molecules studied by relaxation-assisted two-dimensional infrared spectroscopy. Ann Rev Phys Chem 66:717–738

    Article  CAS  Google Scholar 

  28. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA: protein complexes. Proc Natl Acad Sci U S A 106:6620–6625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ribeiro AAST, Ortiz V (2015) Energy propagation and network energetic coupling in proteins. J Phys Chem B 119:1835–1846

    Article  CAS  PubMed  Google Scholar 

  30. Ribeiro AAST, Ortiz V (2014) Determination of signaling pathways in proteins through network theory: importance of the topology. J Chem Theor Comput 10:1762–1769

    Article  CAS  Google Scholar 

  31. DiPaola L, Giuliani A (2015) Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol 31:43–48

    Article  CAS  Google Scholar 

  32. Feher VA, Durrant JD, Wart ATV, Amaro RE (2014) Computational approaches to mapping allosteric pathways. Curr Opin Struct Biol 25:98–103

    Article  CAS  PubMed  Google Scholar 

  33. Gursoy A, Keskin O, Nussinov R (2008) Topological properties of protein interaction networks from a structural perspective. Biochem Soc Trans 36:1398–1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee Y, Choi S, Hyeon C (2014) Mapping the intramolecular signal transduction of G-protein coupled receptors. Proteins 82:727–743

    Article  CAS  PubMed  Google Scholar 

  35. Miao Y, Nichols SE, Gasper PM, Metzger VT, McCammon JA (2013) Activation and dynamic network of the M2 muscarinic receptor. Proc Natl Acad Sci U S A 110:10982–10987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Del-Sol A, Fujihashi H, Amoros D, Nussinov R (2006) Residues crucial for maintaining short paths in network communication mediate signaling in proteins. Mol Sys Biol 2:2006.0019

    Google Scholar 

  37. Atilgan AR, Turgut D, Atilgan C (2007) Screened nonbonded interactions in native proteins manipulate optimal paths for robust residue communication. Biophys J 92:3052–3062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woods KN (2014) Using THz time-scale infrared spectroscopy to examine the role of collective, thermal fluctuations in the formation of myoglobin allosteric communication pathways and ligand specificity. Soft Matter 10:4387–4402

    Article  CAS  PubMed  Google Scholar 

  39. Woods KN, Pfeffer J (2015) Using THz spectroscopy, evolutionary network analysis methods, and MD simulation to map the evolution of allosteric communication pathways in c-type lysozymes. Mol Biol Evol 2:271–274

    Google Scholar 

  40. Achoch M, Dorantes-Gilardi R, Wymant C, Feverati G, Salamatian K, Vuillon L, Lesieur C (2016) Protein structural robustness to mutations: an in silico investigation. Phys Chem Phys 16:13770–13780

    Article  CAS  Google Scholar 

  41. Ribeiro AAST, Ortiz V (2016) A chemical perspective on allostery. Chem Rev 116:6488–6502

    Article  CAS  PubMed  Google Scholar 

  42. Vuillon L, Lesieur C (2015) From local to global changes in proteins: a network view. Curr Opin Struct Biol 31:1–8

    Article  CAS  PubMed  Google Scholar 

  43. DiPaola L, DeRuvo M, Paci P, Santoni D, Giuliani A (2013) Protein contact networks: an emerging paradigm in chemistry. Chem Rev 113:1598–1613

    Article  CAS  Google Scholar 

  44. Dokholyan NV (2016) Controlling allosteric networks in proteins. Chem Rev 116:6463–6487

    Article  CAS  PubMed  Google Scholar 

  45. Livi L, Maiorino E, Pinna A, Sadeghian A, Rizzi A, Giuliani A (2016) Analysis of heat kernel highlights the strongly modular and heat-preserving structure of proteins. Physica A 441:199–214

    Article  CAS  Google Scholar 

  46. Livi L, Maiorino E, Giuliani A, Rizzi A, Sadeghian A (2016) A generative model for protein contact networks. J Biomol Struct Dynamics 34:1441–1454

    Article  CAS  Google Scholar 

  47. Khor S (2017) Comparing local search paths with global search paths on protein residue networks: allosteric communication. J Complex Networks 5:409–432

    Google Scholar 

  48. Khor S (2016) Protein residue networks from a local search perspective. J Complex Networks 4:245–278

    Article  Google Scholar 

  49. Avd V, Lorkowski A, Ma N, Gray GM (2017) Computer simulations of the retinoid X receptor: conformational dynamics and allosteric networks. Curr Top Med Chem 17:731–741

    Article  CAS  Google Scholar 

  50. Amor BRC, Schaub MT, Yaliriki SN, Barahona M (2016) Prediction of allosteric sites and mediating interactions through bond-to-bond propensities. Nat Commun 7:12477. https://doi.org/10.1038/ncomms12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Censoni L, dosSantosMuniz H, Martínez L (2017) A network model predicts the intensity of residue-protein thermal coupling. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx124

  52. Banerji A, Ghosh I (2011) Fractal symmetry of protein interior: what have we learned? Cell Mol Life Sci 68:2711–2737

    Article  CAS  PubMed  Google Scholar 

  53. Reuveni S, Klafter J, Granek R (2012) Dynamic structure factor of vibrating fractals. Phys Rev Lett 108:068101

    Article  PubMed  CAS  Google Scholar 

  54. Reuveni S, Granek R, Klafter J (2010) Anomalies in the vibrational dynamics of proteins are a consequence of fractal-like structure. Proc Natl Acad Sci U S A 107:13696–13670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Granek R (2011) Proteins as fractals: role of the hydrodynamic interaction. Phys Rev E 83:020902

    Article  CAS  Google Scholar 

  56. Enright MB, Yu X, Leitner DM (2006) Hydration dependence of the mass fractal dimension and anomalous diffusion of vibrational energy in proteins. Phys Rev E 73:051905

    Article  CAS  Google Scholar 

  57. Enright MB, Leitner DM (2005) Mass fractal dimension and the compactness of proteins. Phys Rev E 71:011912

    Article  CAS  Google Scholar 

  58. Yu X, Leitner DM (2003) Anomalous diffusion of vibrational energy in proteins. J Chem Phys 119:12673–12679

    Article  CAS  Google Scholar 

  59. Leitner DM (2008) Energy flow in proteins. Ann Rev Phys Chem 59:233–259

    Article  CAS  Google Scholar 

  60. Chowdary P, Gruebele M (2009) Molecules: what kind of bag of atoms? J Phys Chem A 113:13139–13143

    Article  CAS  PubMed  Google Scholar 

  61. Suel GM, Lockless SW, Wall MA, Ranganathan R (2003) Evolutionarily conserved networks of residues mediate allosteric communication in proteins. Nat Struct Biol 10:59–69

    Article  PubMed  CAS  Google Scholar 

  62. Ota N, Agard DA (2005) Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion. J Mol Biol 351:345–354

    Article  CAS  PubMed  Google Scholar 

  63. Sharp K, Skinner JJ (2006) Pump-probe molecular dynamics as a tool for studying protein motion and long range coupling. Proteins 65:347–361

    Article  CAS  PubMed  Google Scholar 

  64. Lu C, Knecht V, Stock G (2016) Long-range conformational response of a PDZ domain to ligand binding and release: a molecular dynamics study. J Chem Theor Comput 12:870–878

    Article  CAS  Google Scholar 

  65. Buchenberg S, Knecht V, Walser R, Hamm P, Stock G (2014) Long-range conformational transition of a photoswitchable allosteric protein: molecular dynamics simulation study. J Phys Chem B 118:13468–13476. https://doi.org/10.1021/jp506873y

    Article  CAS  PubMed  Google Scholar 

  66. Cui Q, Karplus M (2008) Allostery and cooperativity revisited. Protein Sci 17:1295–1307. https://doi.org/10.1110/ps.03259908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tsai C-J, delSol A, Nussinov R (2009) Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol BioSystems 5:207–216

    Article  CAS  Google Scholar 

  68. Changeux J-P (2012) Allostery and the Monod-Wyman-Changeux model after 50 years. Annu Rev Biophys 41:103–133

    Article  CAS  PubMed  Google Scholar 

  69. Diaz-Franulic I, Poblete H, Miño-Galaz G, González C, Latorre R (2016) Allosterism and structure in thermally activated transient receptor potential channels. Annu Rev Biophys 45:371–398

    Article  CAS  PubMed  Google Scholar 

  70. Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324:198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286:295–299

    Article  CAS  PubMed  Google Scholar 

  72. LeVine MV, Weinstein H (2014) NbIT—a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. PLoS Comput Biol 10:e1003603. https://doi.org/10.1371/journal.pcbi.1003603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu T, Whitten ST, Hilser VJ (2006) Ensemble-based signatures of energy propagation in proteins: a new view of an old phenomenon. Proteins 62:728–738

    Article  CAS  PubMed  Google Scholar 

  75. Zhuralev PI, Papoian GA (2010) Protein functional landscapes, dynamics, allostery: a tortuous path towards a universal theoretical framework. Q Rev Biophys 43:295–332

    Article  CAS  Google Scholar 

  76. Nagy AM, Raicu V, Miller RJD (2005) Nonlinear optical studies of heme protein dynamics: implications for proteins as hybrid states of matter. Biochim Biophys Acta 1749:148–172

    Article  CAS  PubMed  Google Scholar 

  77. Miller RJD (1991) Vibrational energy relaxation and structural dynamics of heme proteins. Ann Rev Phys Chem 42:581–614

    Article  CAS  Google Scholar 

  78. Royer WE, Knapp JE, Strand K, Heaslet HA (2001) Cooperative hemoglobins: conserved fold, diverse quaternary assemblies and allosteric mechanisms. Trends Biochem Sci 26:297–304

    Article  CAS  PubMed  Google Scholar 

  79. Royer WE, Zhu H, Gorr TA, Flores JF, Knapp JE (2005) Allosteric hemoglobin assembly: diversity and similarity. J Biol Chem 280:27477–27480

    Article  CAS  PubMed  Google Scholar 

  80. Laine JM, Amat M, Morgan BR, Royer WE, Massi F (2014) Insight into the allosteric mechanism of Scapharca dimeric hemoglobin. Biochemist 53:7199–7210

    Article  CAS  Google Scholar 

  81. Ikeda-Saito M, Yonetani T, Chiancone E, Ascoli F, Verzili D, Antonini E (1983) Thermodynamic properties of oxygen equilibria of dimeric and tetrameric hemoglobins from Scapharca inaequivalvis. J Mol Biol 170:1009–1018

    Article  CAS  PubMed  Google Scholar 

  82. Gnanasekaran R, Xu Y, Leitner DM (2010) Dynamics of water clusters confined in proteins: a molecular dynamics simulation study of interfacial waters in a dimeric hemoglobin. J Phys Chem B 114:16989–16996

    Article  CAS  PubMed  Google Scholar 

  83. Pardanani A, Gambacurta A, Ascoil F, Royer WE (1998) Mutational destabilization of the critical interface water cluster in Scapharca dimeric hemoglobin: structural basis for altered allosteric activity. J Mol Biol 284:729–739

    Article  CAS  PubMed  Google Scholar 

  84. Pardanani A, Gibson QH, Colotti G, Royer WE (1997) Mutation of residue Phe 97 to Leu disrupts the central allosteric pathway in Scapharca dimeric hemoglobin. J Biol Chem 272:13171–13179

    Article  CAS  PubMed  Google Scholar 

  85. Royer WE, Pardanani A, Gibson QH, Peterson ES, Friedman JM (1996) Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc Natl Acad Sci 93:14526–14531

    Article  CAS  PubMed  Google Scholar 

  86. Ceci P, Giangiacomo L, Boffi A, Chiancone E (2002) The mutation K30D disrupts the only salt bridge at the subunit interface of the homodimeric hemoglobin from Scapharca inaequivalvis and changes the mechanism of cooperativity. J Biol Chem 277:6929–2933

    Article  CAS  PubMed  Google Scholar 

  87. Royer WE, Hendrickson WA, Chiancone E (1990) Structural transitions upon ligand binding in a cooperative dimeric hemoglobin. Science 249:518–521

    Article  CAS  PubMed  Google Scholar 

  88. Elber R (2007) A milestoning study of the kinetics of an allosteric transition: atomically detailed simulations of deoxy Scapharca hemoglobin. Biophys J 92:L85–L87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sagnella DE, Straub JE (2001) Directed energy “funneling” mechanism for heme cooling following ligand photolysis or direct excitation in solvated carbonmonoxy myoglobin. J Phys Chem B 105:7057–7063

    Article  CAS  Google Scholar 

  90. Allen PB, Feldman JL (1993) Thermal conductivity of disordered harmonic solids. Phys Rev B 48:12581–12588

    Article  CAS  Google Scholar 

  91. Pandey HD, Leitner DM (2016) Thermalization and thermal transport in molecules. J Phys Chem Lett 7:5062–5067

    Article  CAS  PubMed  Google Scholar 

  92. Pandey HD, Leitner DM (2017) Vibrational energy transport in molecules and the statistical properties of vibrational modes. Chem Phys 482:81–85

    Article  CAS  Google Scholar 

  93. Leitner DM (2005) Heat transport in molecules and reaction kinetics: the role of quantum energy flow and localization. Adv Chem Phys 130B:205–256

    Google Scholar 

  94. Leitner DM (2015) Quantum ergodicity and energy flow in molecules. Adv Phys 64:445–517

    Article  CAS  Google Scholar 

  95. Leitner DM, Wolynes PG (1996) Vibrational relaxation and energy localization in polyatomics: effects of high-order resonances on flow rates and the quantum ergodicity transition. J Chem Phys 105(24):11226–11236

    Article  CAS  Google Scholar 

  96. Leitner DM, Wolynes PG (1996) Statistical properties of localized vibrational eigenstates. Chem Phys Lett 258:18–24

    Article  CAS  Google Scholar 

  97. Yu X, Leitner DM (2003) Vibrational energy transfer and heat conduction in a protein. J Phys Chem B 107:1698–1707

    Article  CAS  Google Scholar 

  98. Leitner DM, Gruebele M (2008) A quantum model of restricted vibrational energy flow on the way to the transition state in unimolecular reactions. Mol Phys 106:433–442

    Article  CAS  Google Scholar 

  99. Bigwood R, Gruebele M, Leitner DM, Wolynes PG (1998) The vibrational energy flow transition in organic molecules: theory meets experiment. Proc Natl Acad Sci U S A 95:5960–5964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gruebele M (2000) Molecular vibrational energy flow: a state space approach. Adv Chem Phys 114:193–261

    Google Scholar 

  101. Keshavamurthy S (2013) Scaling perspective on intramolecular vibrational energy flow: analogies, insights and challenges. Adv Chem Phys 153:43–110

    CAS  Google Scholar 

  102. Manikandan P, Keshavamurthy S (2014) Dynamical traps lead to the slowing down of intramolecular vibrational energy flow. Proc Natl Acad Sci U S A 111:14354–14359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Leitner DM (1993) Real-symmetric random matrix ensembles of Hamiltonians with partial symmetry-breaking. Phys Rev E 48:2536–2546

    Article  CAS  Google Scholar 

  104. Leitner DM, Cederbaum LS (1994) Some properties of invariant random-matrix ensembles and their connection to ergodic and nonergodic Hamiltonian systems. Phys Rev E 49:114–121

    Article  CAS  Google Scholar 

  105. Leitner DM, Wolynes PG (1997) Quantization of the stochastic pump model of Arnold diffusion. Phys Rev Lett 79:55–58

    Article  CAS  Google Scholar 

  106. Leitner DM, Pandey HD (2015) Quantum bottlenecks and unidirectional energy flow in molecules. Ann der Phys 527:601–609

    Article  CAS  Google Scholar 

  107. Leitner DM, Pandey HD (2015) Asymmetric energy flow in liquid alkylbenzenes: a computational study. J Chem Phys 143:144301

    Article  PubMed  CAS  Google Scholar 

  108. Fujisaki H, Stock G (2008) Dynamic treatment of vibrational energy relaxation in a heterogeneous and fluctuating environment. J Chem Phys 129(13):134110

    Article  PubMed  CAS  Google Scholar 

  109. Leitner DM (2001) Vibrational energy transfer in helices. Phys Rev Lett 87:188102

    Article  CAS  Google Scholar 

  110. Leitner DM (2001) Vibrational energy transfer and heat conduction in a one-dimensional glass. Phys Rev B 64:094201

    Article  CAS  Google Scholar 

  111. Alicki R, Leitner DM (2015) Size-dependent accuracy of nanoscale thermometers. J Phys Chem B 119:9000–9005. https://doi.org/10.1021/jp508047q

    Article  CAS  PubMed  Google Scholar 

  112. Leitner DM (2012) Mode damping rates in a protein chromophore. Chem Phys Lett 530:102–106

    Article  CAS  Google Scholar 

  113. Leitner DM, Köppel H, Cederbaum LS (1994) Effects of symmetry breaking on spectra of chaotic Hamiltonian systems. Phys Rev Lett 73:2970–2973

    Article  CAS  PubMed  Google Scholar 

  114. Leitner DM, Köppel H, Cederbaum LS (1996) Statistical properties of molecular spectra and molecular dynamics: analysis of their correspondence in NO2 and C2H4+. J Chem Phys 104:434–443

    Article  CAS  Google Scholar 

  115. Maisuradze GG, Yu X, Leitner DM (2007) Normal mode analysis and calculation of the cooling rates of the chromophore vibrations during isomerization of photoactive yellow protein. J Biol Phys Chem 7:25–29

    CAS  Google Scholar 

  116. Xu Y, Gnanasekaran R, Leitner DM (2013) The dielectric response to photoexcitation of GFP: a molecular dynamics study. Chem Phys Lett 564:78–82

    Article  CAS  Google Scholar 

  117. Pandey HD, Leitner DM (2018) Small saccharides as a blanket around proteins: a computational study. J Phys Chem B 122:7277–7285. https://doi.org/10.1021/acs.jpcb.8b04632

    Article  CAS  PubMed  Google Scholar 

  118. Pandey HD, Leitner DM (2017) Influence of thermalization on thermal conduction through molecular junctions: computational study of PEG oligomers. J Chem Phys 147:084701

    Article  PubMed  CAS  Google Scholar 

  119. Buldum A, Leitner DM, Ciraci S (1999) Thermal conduction through a molecule. Europhys Lett 47:208–212

    Article  CAS  Google Scholar 

  120. Leitner DM, Matsunaga Y, Li C-B, Komatsuzaki T, Shojiguchi A, Toda M (2011) Non-brownian phase space dynamics of molecules, the nature of their vibrational states, and non-RRKM kinetics. Adv Chem Phys 145:83–122

    CAS  Google Scholar 

  121. Komatsuzaki T, Berry RS, Leitner DM (2011) Advancing theory for kinetics and dynamics of complex, many-dimensional systems: clusters and proteins, Adv. chem. phys, vol 145. Wiley, Hoboken

    Book  Google Scholar 

  122. Leitner DM, Wolynes PG (2006) Quantum theory of enhanced unimolecular reaction rates below the ergodicity threshold. Chem Phys 329:163–167

    Article  CAS  Google Scholar 

  123. Leitner DM, Wolynes PG (1997) Quantum energy flow during molecular isomerization. Chem Phys Lett 280:411–418

    Article  CAS  Google Scholar 

  124. Leitner DM, Levine B, Quenneville J, Martínez TJ, Wolynes PG (2003) Quantum energy flow and trans-stilbene photoisomerization: an example of a non-RRKM reaction. J Phys Chem A 107:10706–10716

    Article  CAS  Google Scholar 

  125. Leitner DM (1999) Influence of quantum energy flow and localization on molecular isomerization in gas and condensed phases. Int J Quantum Chem 75:523–531

    Article  CAS  Google Scholar 

  126. Nordholm S (1989) Photoisomerization of stilbene—a theoretical study of deuteration shifts and limited internal vibrational redistribution. Chem Phys 137(1–3):109–120

    Article  CAS  Google Scholar 

  127. Agbo JK, Leitner DM, Myshakin EM, Jordan KD (2007) Quantum energy flow and the kinetics of water shuttling between hydrogen bonding sites on trans-formanilide (TFA). J Chem Phys 127:064310–064311

    Article  CAS  Google Scholar 

  128. Agbo JK, Leitner DM, Evans DA, Wales DJ (2005) Influence of vibrational energy flow on isomerization of flexible molecules: incorporating non-RRKM kinetics in the simulation of dipeptide isomerization. J Chem Phys 123:124304

    Article  PubMed  CAS  Google Scholar 

  129. Agbo JK, Jain A, Leitner DM (2010) Quantum localization, dephasing and vibrational energy flow in a trans-formanilide (TFA)-H2O complex. Chem Phys 374:111–117

    Article  CAS  Google Scholar 

  130. Patra S, Keshavamurthy S (2015) Classical-quantum correspondence in a model for conformational dynamics: connecting phase space reactive islands with rare events sampling. Chem Phys Lett 634:1–10

    Article  CAS  Google Scholar 

  131. Toda M (2005) Global aspects of chemical reactions in multidimensional phase space. Adv Chem Phys 130A:337–399

    Google Scholar 

  132. Hamm P, Lim M, Hochstrasser RM (1998) Structure of the amide I band of peptides measured by fs nonlinear-infrared spectroscopy. J Phys Chem B 102:6123–6138

    Article  CAS  Google Scholar 

  133. Zhang Y, Fujisaki H, Straub JE (2009) Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. 1. Five-coordinate ferrous iron porphydin model. J Chem Phys 130:025102

    Article  PubMed  CAS  Google Scholar 

  134. Zhang Y, Fujisaki H, Straub JE (2009) Mode specific vibrational energy relaxation of amide I and II modes in N-methylacetamide/water clusters: the intra- and inter-molecular energy transfer mechanisms. J Phys Chem A 113:3051–3060

    Article  CAS  PubMed  Google Scholar 

  135. Austin RH, Xie A, Lvd M, Redlich B, Lingård P-A, Frauenfelder H, Fu D (2005) Picosecond thermometer in the amide I band of myoglobin. Phys Rev Lett 94:128101

    Article  PubMed  CAS  Google Scholar 

  136. Peterson KA, Rella CW, Engholm JR, Schwettman HA (1999) Ultrafast vibrational dynamics of the myoglobin amide I band. J Phys Chem B 103:557–561

    Article  CAS  Google Scholar 

  137. Moritsugu K, Miyashita O, Kidera A (2003) Temperature dependence of vibrational energy transfer in a protein molecule. J Phys Chem B 107:3309–3317

    Article  CAS  Google Scholar 

  138. Moritsugu K, Miyashita O, Kidera A (2000) Vibrational energy transfer in a protein molecule. Phys Rev Lett 85:3970–3973

    Article  CAS  PubMed  Google Scholar 

  139. Newman M (2005) A measure of betweenness centrality based on random walks. Soc Networks 27:39–54

    Article  Google Scholar 

  140. Dijkstra EW (1959) A note on two problems in connection with graphs. Numerische Math 1:269–271

    Article  Google Scholar 

  141. Ren Z, Srajer V, Knapp JE, Royer WE (2012) Cooperative macromolecular device revealed by meta-analysis of static and time-resolved structures. Proc Natl Acad Sci U S A 109:107–112

    Article  CAS  PubMed  Google Scholar 

  142. Nakayama T, Kousuke Y, Orbach RL (1994) Dynamical properties of fractal networks: scaling, numerical simulations, and physical realizations. Rev Mod Phys 66:381–443

    Article  CAS  Google Scholar 

  143. Reid KM, Yamato T, Leitner DM (2018) Scaling of rates of vibrational energy transfer in proteins with equilibrium dynamics and entropy. J Phys Chem B 122:9331–9339. https://doi.org/10.1021/acs.jpcb.8b07552

  144. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2016) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theor Compute 11:3696–3713

    Article  CAS  Google Scholar 

  145. Berendsen H, Postma J, vanGunsteren W, DiNola A, Haak J (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  146. Meister K, Ebbinghaus S, Xu Y, Duman JG, DeVries A, Gruebele M, Leitner DM, Havenith M (2013) Long-range protein–water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci U S A 110:1617–1622

    Article  CAS  PubMed  Google Scholar 

  147. Leitner DM, Havenith M, Gruebele M (2006) Biomolecule large amplitude motion and solvation dynamics: modeling and probes from THz to X-rays. Int Rev Phys Chem 25:553–582

    Article  CAS  Google Scholar 

  148. Ebbinghaus S, Kim S-J, Heyden M, Yu X, Heugen U, Gruebele M, Leitner DM, Havenith M (2007) An extended dynamical solvation shell around proteins. Proc Natl Acad Sci U S A 104:20749–20752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ebbinghaus S, Kim SJ, Heyden M, Yu X, Gruebele M, Leitner DM, Havenith M (2008) Protein sequence- and pH-dependent hydration probed by terahertz spectroscopy. J Am Chem Soc 130:2374–2375

    Article  CAS  PubMed  Google Scholar 

  150. Heugen U, Schwaab G, Bründermann E, Heyden M, Yu X, Leitner DM, Havenith M (2006) Solute induced retardation of water dynamics: hydration water probed directly by THz spectroscopy. Proc Natl Acad Sci U S A 103:12301–12306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Heyden M, Bründermann E, Heugen U, Niehues G, Leitner DM, Havenith M (2008) The long range influence of carbohydrates on the solvation dynamics of water—answers from THz spectroscopic measurements and molecular modelling simulations. J Am Chem Soc 130:5773–5779

    Article  CAS  PubMed  Google Scholar 

  152. Heyden M, Havenith M (2010) Combining THz spectroscopy and MD simulations to study protein-hydration coupling. Methods 52:74–83

    Article  CAS  PubMed  Google Scholar 

  153. Leitner DM, Gruebele M, Havenith M (2008) Solvation dynamics of biomolecules: modeling and terahertz experiments. HFSP J 32:314–323

    Article  CAS  Google Scholar 

  154. Luong TQ, Xu Y, Bründermann E, Leitner DM, Havenith M (2016) Hydrophobic collapse induces changes in the collective protein and hydration low frequency modes. Chem Phys Lett 651:1–7

    Article  CAS  Google Scholar 

  155. Xu Y, Gnanasekaran R, Leitner DM (2012) Analysis of water and hydrogen bond dynamics at the surface of an antifreeze protein. J At Mol Opt Phys 2012:125071–125076

    Google Scholar 

  156. Meister K, Duman JG, Xu Y, DeVries AL, Leitner DM, Havenith M (2014) The role of sulfates on antifreeze protein activity. J Phys Chem B 118:7920–7924

    Article  CAS  PubMed  Google Scholar 

  157. Schmidt DA, Birer Ö, Funkner S, Born B, Gnanasekaran R, Schwaab G, Leitner DM, Havenith M (2009) Rattling in the cage: ions as probes of sub-picosecond water network dynamics. J Am Chem Soc 131:18512–18517

    Article  CAS  PubMed  Google Scholar 

  158. Xu Y, Bäumer A, Meister K, Bischak C, DeVries AL, Leitner DM, Havenith M (2016) Protein-water dynamics in antifreeze protein III activity. Chem Phys Lett 647:1–6

    Article  CAS  Google Scholar 

  159. Acbas G, Niessen KA, Snell EH, Markelz AG (2014) Optical measurements of long-range protein vibrations. Nat Commun 5:3076

    Article  PubMed  CAS  Google Scholar 

  160. Knab JR, Chen J-Y, Markelz AG (2006) Hydration dependence of conformational dielectric relaxation of lysozyme. Biophys J 90:2576–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Yu X, Park J, Leitner DM (2003) Thermodynamics of protein hydration computed by molecular dynamics and normal modes. J Phys Chem B 107:12820–12829

    Article  CAS  Google Scholar 

  162. Pandey HD, Leitner DM (2017) Thermodynamics of hydration water around an antifreeze protein: a molecular simulation study. J Phys Chem B 121:9498–9507

    Article  CAS  PubMed  Google Scholar 

  163. LeBard DN, Matyushov DV (2010) Ferroelectric hydration shells around proteins: electrostatics of the protein-water interface. J Phys Chem B 114:9246–9258

    Article  CAS  PubMed  Google Scholar 

  164. Martin DR, Matyushov DV (2012) Non-Gaussian statistics and nanosecond dynamics of electrostatic fluctuations affecting optical transitions in proteins. J Phys Chem B 116:10294–10300

    Article  CAS  PubMed  Google Scholar 

  165. Martin DR, Matyushov DV (2015) Dipolar nanodomains in protein hydration shells. J Phys Chem Lett 6:407–412

    Article  CAS  PubMed  Google Scholar 

  166. Matyushov DV (2010) Terahertz response of dipolar impurities in polar liquids: on anomalous dielectric absorption of protein solutions. Phys Rev E 81:021914

    Article  CAS  Google Scholar 

  167. Heyden M, Tobias DJ (2013) Spatial dependence of protein-water collective hydrogen bond dynamics. Phys Rev Lett 111:218101

    Article  PubMed  CAS  Google Scholar 

  168. Laage D, Elsaesser T, Hynes JT (2017) Water dynamics in the hydration shells of biomolecules. Chem Rev 117:10694–10725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Xu Y, Havenith M (2015) Perspective: watching low-frequency vibrations of water in biomolecules by THz spectroscopy. J Chem Phys 143:170901

    Article  PubMed  CAS  Google Scholar 

  170. Wirtz H, Schäfer S, Hoberg C, Reid KM, Leitner DM, Havenith M (2018) Hydrophobic collapse of ubiquitin generates rapid protein-water motions. Biochemistry 57:3650–3657

    Article  CAS  PubMed  Google Scholar 

  171. Wellig S, Hamm P (2018) Solvation layer of antifreeze proteins analyzed with a Markov state model. J Phys Chem B 122:11014–11022. https://doi.org/10.1021/acs.jpcb.8b04491

  172. Leitner DM, Pandey HD, Reid KM (2019) Energy transport across interfaces in biomolecular systems. J Phys Chem B 123:9507–9524

    Google Scholar 

  173. Reid KM, Yamato T, Leitner DM (2020) Variation of energy transfer rates across protein-water contacts with equilibrium structural fluctuations of a homodimeric hemoglobin. J Phys Chem B 124:1148–1159

    Google Scholar 

  174. Leitner DM, Yamato T (2020) Recent developments in the computational study of protein structural and vibrational energy dynamics. Biophysical Reviews 12:317–322

    Google Scholar 

  175. Leitner DM, Hyeon C, Reid KM (2020) Water-mediated biomolecular dynamics and allostery. J Chem Phys 152:240901

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Takahisa Yamato for making available his program CURP and for a number of helpful discussions. Some of the work reviewed here is the result of a collaboration DML has enjoyed with Gerhard Stock and Sebastian Buchenberg on modeling energy dynamics in proteins. Support from NSF grants CHE-1361776 and CHE-1854271 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Leitner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reid, K.M., Leitner, D.M. (2021). Locating and Navigating Energy Transport Networks in Proteins. In: Di Paola, L., Giuliani, A. (eds) Allostery. Methods in Molecular Biology, vol 2253. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1154-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1154-8_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1153-1

  • Online ISBN: 978-1-0716-1154-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics