Skip to main content

Simulations and Experiments in Protein Folding

  • Protocol
  • First Online:
Molecular Modeling of Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1215))

  • 5790 Accesses

Abstract

The interplay between simulations and experiments of protein folding has largely contributed to the elucidation of many important aspects of the phenomenon. In this chapter, I briefly describe the experiments which provide information on the kinetics of the protein folding process, and help to characterize the folding transition state. Then, I show how to probe the kinetics of protein folding using molecular dynamics simulations, how to compare the simulations with the experiments and how to help and rationalize the latter, ultimately offering a molecular picture of the process. After the production of suitable molecular dynamics simulation data in the form of trajectories, the procedure involves sequentially the identification of the stable states of the protein, the identification of the transition pathways connecting the stable states, the identification of the transition state conformations, comparison with experimental results, and finally, the identification of the molecular determinants or reaction coordinates of the folding process, that is, the features that clearly help distinguishing the transition state from the stable states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen CB, Haber E, Sela M, White FH Jr (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A 47:1309–1314

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Matouschek A, Kellis JT Jr, Serrano L, Fersht AR (1989) Mapping the transition state and pathway of protein folding by protein engineering. Nature 340(6229):122–126

    Article  PubMed  CAS  Google Scholar 

  3. Fersht AR, Matouschek A, Serrano L (1992) The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224(3):771–782

    Article  PubMed  CAS  Google Scholar 

  4. Jackson SE, Moracci M, elMasry N, Johnson CM, Fersht AR (1993) Effect of cavity-creating mutations in the hydrophobic core of chymotrypsin inhibitor 2. Biochemistry 32(42):11259–11269

    Article  PubMed  CAS  Google Scholar 

  5. Li A, Daggett V (1996) Identification and characterization of the unfolding transition state of chymotrypsin inhibitor 2 by molecular dynamics simulations. J Mol Biol 257(2):412–429

    Article  PubMed  CAS  Google Scholar 

  6. Gsponer J, Caflisch A (2002) Molecular dynamics simulations of protein folding from the transition state. Proc Natl Acad Sci U S A 99(10):6719–6724

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Vendruscolo M, Paci E, Dobson CM, Karplus M (2001) Three key residues form a critical contact network in a protein folding transition state. Nature 409(6820):641–645

    Article  PubMed  CAS  Google Scholar 

  8. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298(5):937–953

    Article  PubMed  CAS  Google Scholar 

  9. Settanni G, Gsponer J, Caflisch A (2004) Formation of the folding nucleus of an SH3 domain investigated by loosely coupled molecular dynamics simulations. Biophys J 86(3):1691–1701

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Settanni G, Fersht AR (2008) High temperature unfolding simulations of the TRPZ1 peptide. Biophys J 94(11):4444–4453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97

    Article  Google Scholar 

  12. Abe H, Go N (1981) Noninteracting local-structure model of folding and unfolding transition in globular proteins. II. Application to two-dimensional lattice proteins. Biopolymers 20(5):1013–1031

    Article  PubMed  CAS  Google Scholar 

  13. Klimov DK, Thirumalai D (2000) Mechanisms and kinetics of beta-hairpin formation. Proc Natl Acad Sci U S A 97(6):2544–2549

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Settanni G, Cattaneo A, Maritan A (2001) Role of native-state topology in the stabilization of intracellular antibodies. Biophys J 81(5):2935–2945

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Settanni G, Hoang TX, Micheletti C, Maritan A (2002) Folding pathways of prion and doppel. Biophys J 83(6):3533–3541

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7(8):306–317

    CAS  Google Scholar 

  17. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) Charmm—a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217

    Article  CAS  Google Scholar 

  18. Seeber M, Cecchini M, Rao F, Settanni G, Caflisch A (2007) Wordom: a program for efficient analysis of molecular dynamics simulations. Bioinformatics 23(19):2625–2627

    Article  PubMed  CAS  Google Scholar 

  19. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38

    Article  PubMed  CAS  Google Scholar 

  20. Cochran AG, Skelton NJ, Starovasnik MA (2001) Tryptophan zippers: stable, monomeric beta-hairpins. Proc Natl Acad Sci U S A 98(10):5578–5583

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Jorgensen WL, Maxwell DS, TiradoRives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236

    Article  CAS  Google Scholar 

  22. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans, J (1981) Intermolecular foces. In: Pullman B (ed). Reidel, Dordrecht, The Netherlands

    Google Scholar 

  23. Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

    Article  CAS  Google Scholar 

  24. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

    Article  CAS  Google Scholar 

  25. Radford IH, Fersht AR, Settanni G (2011) Combination of Markov state models and kinetic networks for the analysis of molecular dynamics simulations of peptide folding. J Phys Chem B 115(22):7459–7471

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Ferrara P, Apostolakis J, Caflisch A (2002) Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins 46(1):24–33

    Article  PubMed  CAS  Google Scholar 

  27. Cavalli A, Ferrara P, Caflisch A (2002) Weak temperature dependence of the free energy surface and folding pathways of structured peptides. Proteins 47(3):305–314

    Article  PubMed  CAS  Google Scholar 

  28. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of Cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  29. Hartigan JA (1975) Clustering algorithms. Wiley series in probability and mathematical statistics. Wiley, New York. xiii, 351 p

    Google Scholar 

  30. Du R, Pande VS, Grosberg AY, Tanaka T, Shakhnovich ES (1998) On the transition coordinate for protein folding. J Chem Phys 108(1):334–350

    Article  CAS  Google Scholar 

  31. Frenkel D, Smit B (2002) Understanding molecular simulation : from algorithms to applications, 2nd ed. Computational science series. Academic, San Diego. xxii, 638 p

    Google Scholar 

  32. Rao F, Settanni G, Guarnera E, Caflisch A (2005) Estimation of protein folding probability from equilibrium simulations. J Chem Phys 122(18):184901

    Article  PubMed  Google Scholar 

  33. Settanni G, Rao F, Caflisch A (2005) Phi-value analysis by molecular dynamics simulations of reversible folding. Proc Natl Acad Sci U S A 102(3):628–633

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Best RB, Hummer G (2005) Reaction coordinates and rates from transition paths. Proc Natl Acad Sci U S A 102(19):6732–6737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Serrano L, Matouschek A, Fersht AR (1992) The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol 224(3):805–818

    Article  PubMed  CAS  Google Scholar 

  36. Du D, Zhu Y, Huang CY, Gai F (2004) Understanding the key factors that control the rate of beta-hairpin folding. Proc Natl Acad Sci U S A 101(45):15915–15920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Du D, Tucker MJ, Gai F (2006) Understanding the mechanism of beta-hairpin folding via phi-value analysis. Biochemistry 45(8):2668–2678

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Settanni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Settanni, G. (2015). Simulations and Experiments in Protein Folding. In: Kukol, A. (eds) Molecular Modeling of Proteins. Methods in Molecular Biology, vol 1215. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1465-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1465-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1464-7

  • Online ISBN: 978-1-4939-1465-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics