Skip to main content
Log in

The effect of atp-dependent potassium uptake on mitochondrial functions under acute hypoxia

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The opening of mitochondrial K+ АТР-channel (mtK+ АТР-channel) is supposed to be important in the modulation of mitochondrial functions under hypoxia, but the underlying mechanisms have not been clarified yet. The aim of this work was to study the effect of acute hypoxia on mtK+ АТР-channel activity and to estimate the contribution of the channel in the modulation of mitochondrial functions. MtK+ АТР-channel activity was assessed polarographically from the rate of State 4 respiration and by potentiometric monitoring of potassium efflux from deenergized mitochondria. It was shown that hypoxia reliably increased mtK+ АТР-channel activity, which resulted in the changes of respiration rates (increase of State 4 and suppression of State 3 respiration), uncoupling (the decrease of respiratory control ratio) and suppression of phosphorylation. These effects were well mimicked by mtK+ АТР-channel opener diazoxide (DZ) in isolated rat liver mitochondria. MtK+ АТР-channel opening in vitro suppressed phosphorylation too, but increased phosphorylation efficiency, while mtK+ АТР-channel blockers reduced it dramatically. The correlation was established between mtK+ АТР-channel activity and the endurance of the rats to physical training under hypoxia. Hypoxia improved physical endurance, but treatment by mtK+ АТР-channel blockers glibenklamide and 5-hydroxydecanoate (5-HD) prior to hypoxia strongly reduced both the channel activity and the endurance limits. This was in accord with the observation that under glibenklamide and 5-HD administration hypoxia failed to restore mtK+ АТР-channel activity. Based on the experiments, we came to the conclusion that mtK+ АТР-channel opening played a decisive role in the regulation of energy metabolism under acute hypoxia via the modulation of phosphorylation system in mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akopova OV, Nosar VI, Bouryi VA, Mankovska IN, Sagach VF (2010) Influence of ATP-dependent K+-channel opener on K+-cycle and oxygen consumption in rat liver mitochondria. Biochem Mosc 75:1139–1147

    Article  CAS  Google Scholar 

  • Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol 291:H2067–H2074

    CAS  Google Scholar 

  • Baranova OV, Skarga YY, Negoda AE, Mironova GD (2000) Inhibition of DNP-induced potassium efflux by adenine nucleotides in mitochondria. Biokhimia (Moscow) 65:262–267 (in Russian)

    Google Scholar 

  • Beavis AD (1987) Upper and lower limits of the charge translocation stoichiometry of mitochondrial electron transport. J Biol Chem 262:6165–6173

    CAS  Google Scholar 

  • Beavis AD, Lehninger AL (1986) The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Eur J Biochem 158:315–322

    Article  CAS  Google Scholar 

  • Belisle E, Kowaltowski AJ (2002) Opening of mitochondrial K+ channels increases ischemic ATP levels by preventing hydrolysis. J Bioenerg Biomembr 34:285–298

    Article  CAS  Google Scholar 

  • Bernardi P, Azzone GF (1983) Electroneutral H+-K+ exchange in liver mitochondria. Regulation by membrane potential. Biochim Biophys Acta 724:212–223

    Article  CAS  Google Scholar 

  • Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T (2004) Targeting mitochondrial ATP-sensitive potassium channels – a novel approach to neuroprotection. Brain Res Rev 46:282–294

    Article  CAS  Google Scholar 

  • Cancherini D, Trabuco LG, Reboucas NA, Kowaltowski AJ (2003) ATP-sensitive K+ channels in renal mitochondria. Am J Physiol 285:F1291–F1296

    CAS  Google Scholar 

  • Cheng Y, Gu XQ, Bednarczyk P, Wiedemann FR, Haddad GG, Siemen D (2008) Hypoxia increases activity of the BK-channel in the inner mitochondrial membrane and reduces activity of the permeability transition pore. Cell Physiol Biochem 22:127–136

    Article  CAS  Google Scholar 

  • Cheng Y, Debska-Vielhaber G, Siemen D (2010) Interaction of mitochondrial potassium channels with the permeability transition pore. FEBS Lett 584:2005–2012

    Article  CAS  Google Scholar 

  • Comelli M, Metelli G, Mavelli I (2007) Down modulation of mitochondrial F0F1 ATP synthase by diazoxide in cardiac myoblasts: a dual effect of the drug. Am J Physiol 292:H820–H829

    CAS  Google Scholar 

  • Costa ADT, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol 295:H874–H882

    CAS  Google Scholar 

  • Da Silva MM, Sartori A, Belisle E, Kowaltowski AJ (2003) Ischemic preconditioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport. Am J Physiol 285:H154–H162

    Google Scholar 

  • Facundo HTF, de Paula JG, Kowaltowski AJ (2005) Mitochondrial ATP-sensitive K+ channels prevent oxidative stress, permeability transition and cell death. J Bioenerg Biomembr 37:75–82

    Article  CAS  Google Scholar 

  • Facundo HTF, Fornazari M, Kowaltowski AJ (2006) Tissue protection mediated by mitochondrial K+ channels. Biochim Biophys Acta 1762:202–212

    Article  CAS  Google Scholar 

  • Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K+-cycle. Biochim Biophys Acta 1606:23–41

    Article  CAS  Google Scholar 

  • Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA (1996) The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem 271:8796–8799

    Article  CAS  Google Scholar 

  • Hiraoka M, Furukawa T (1998) Functional modulation of cardiac ATP-sensitive K+ channels. News Physiol Sci 13:131–137

    CAS  Google Scholar 

  • Kopustinskiene DM, Liobikas J, Skemiene K, Malinauskas F, Toleikis A (2010) Direct effects of KATP channel openers pinacidil and diazoxide on oxidative phosphorylation of mitochondria in situ. Cell Physiol Biochem 25:181–186

    Article  CAS  Google Scholar 

  • Korge P, Honda HM, Weiss JN (2002) Protection of cardiac mitochondria by diazoxide and protein kinase C: implications for ischemic preconditioning. Proc Natl Acad Sci U S A 99:3312–3317

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening ATP-sensitive K+-channel of heart mitochondria. Am J Physiol 280:H649–H657

    CAS  Google Scholar 

  • Lukyanova LD (2011) Current issues of adaptation to hypoxia. Signal mechanisms and their role in systemic regulation. Pathol Physiol Exp Ther 1:3–19 (in Russian)

    Google Scholar 

  • Mankovska IN, Nosar VI, Gorbacheva OS, Gonchar OA, Gavenauskas BL, Bratus LV, Mironova GD (2014) The effect of uridine on the endurance of animals with different resistance to physical stress: the role of mitochondrial ATP-dependent potassium channel. Biophysics 59:764–767

    Article  Google Scholar 

  • Maulink N (2006) Cardiac-genomic response following preconditioning stimulus. Cardiovasc Res 70:254–263

    Article  Google Scholar 

  • Minners J, Lacerda L, Yellon DM, Opie LH, McLeod CJ, Sack MN (2007) Diazoxide-induced respiratory inhibition – a putative mitochondrial KATP channel independent mechanism of pharmacological preconditioning. Mol Cell Biochem 294:11–18

    Article  CAS  Google Scholar 

  • Mironova GD, Shigaeva MI, Gritsenko EN, Murzaeva SV, Gorbacheva OS, Germanova EL, Lukyanova LD (2010) Functioning of the mitochondrial ATP-dependent potassium channel in rats varying in their resistance to hypoxia. Involvement of the channel in the process of animal’s adaptation to hypoxia. J Bioenerg Biomembr 42:473–481

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    Article  CAS  Google Scholar 

  • Murata M, Akao M, O’Rourke B, Marban E (2001) Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898

    Article  CAS  Google Scholar 

  • Murphy E (2004) Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 94:7–16

    Article  CAS  Google Scholar 

  • Nicholls DG, Ferguson SJ (2002) Bioenergetics. Academic, London

    Google Scholar 

  • Novak G, Clifton GL, Bakajsova D (2008) Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells. J Pharmacol Exp Ther 324:1155–1162

    Google Scholar 

  • O’Rourke B (2004) Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res 94:420–432

    Article  Google Scholar 

  • Oldenburg O, Cohen MV, Yellon DM, Downey JM (2002) Mitochondrial KATP channels: role in cardioprotection. Cardiovasc Res 55:429–437

    Article  CAS  Google Scholar 

  • Rottenberg H (1970) ATP synthesis and electrical membrane potential in mitochondria. Eur J Biochem 15:22–28

    Article  CAS  Google Scholar 

  • Semenza GL (2000) HIF-1 and human disease: one highly involved factor. Genes Dev 14:1983–1991

    CAS  Google Scholar 

  • Semenza GL (2007) Life with oxygen. Science 318:62–64

    Article  CAS  Google Scholar 

  • Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M, Candinas D (2001) HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J 15:2445–2453

    CAS  Google Scholar 

  • Stucki JW (1976) Efficiency of oxidative phosphorylation and energy dissipation by H+ ion recycling in rat liver mitochondria metabolizing pyruvate. Eur J Biochem 68:551–562

    Article  CAS  Google Scholar 

  • Szewczyk A, Wojcik G, Nalecz MJ (1995) Potassium channel opener, RP66471, induces membrane depolarization of rat liver mitochondria. Biochim Biophys Res Commun 207:126–132

    Article  CAS  Google Scholar 

  • Szewczyk A, Kajma A, Malinska D, Wrzosek A, Bednarczyk P, Zablocka B, Dolowy K (2010) Pharmacology of mitochondrial potassium channels: dark side of the field. FEBS Lett 584:2063–2069

    Article  CAS  Google Scholar 

  • Wojtovich AP, Brookes PS (2008) The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta 1777:882–889

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Prof. Dr. Galina Mironova for generous permission to use K+-selective microelectrode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Akopova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akopova, O., Nosar, V., Gavenauskas, B. et al. The effect of atp-dependent potassium uptake on mitochondrial functions under acute hypoxia. J Bioenerg Biomembr 48, 67–75 (2016). https://doi.org/10.1007/s10863-015-9642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9642-8

Keywords

Navigation