Skip to main content
Log in

Diazoxide-induced respiratory inhibition – a putative mitochondrial KATP channel independent mechanism of pharmacological preconditioning

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The ischemic preconditioning biological phenomenon has been explored to identify putative pharmacologic agents to mimic this cytoprotective program against cellular ischemic injury. Diazoxide administration confers this cytoprotection, however, whether this is via direct activation of the putative mitochondrial KATP (mKATP) channel which was originally proposed has been questioned. Here, we present data supporting an alternate hypothesis evoking mitochondrial respiratory inhibition rather than mKATP channel activation, as a mediating event in the diazoxide-activated cytoprotective program. Mitochondrial respiration and reactive oxygen species (ROS) production was measured in digitonin-permeabilized C2C12 myotubes, allowing for the modulation of mKATP conductance by changing the potassium concentration of the medium (0–130 mM). Diazoxide dose-dependently attenuated succinate-supported respiration, an effect that was independent of mKATP channel conductance. Similarly, 5-hydroxydecanoate (5-HD), a putative mKATP channel blocker, released diazoxide-induced respiratory inhibition independently of potassium concentration. Since diazoxide-induced cytoprotection and respiratory inhibition are both integrally linked to ROS generation we repeated above experiments following ROS generation using DCF fluorescence. Cytoprotective doses of diazoxide increased ROS generation independently of potassium concentration and 5-HD inhibited ROS production under the same conditions. Collectively these data support the hypothesis that diazoxide-mediated cytoprotection is independent of the conductance of the mKATP channel and rather implicate mitochondrial respiratory inhibition-triggered ROS signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D'Alonzo AJ, Lodge NJ, Smith MA, Grover GJ: Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81: 1072–1082, 1997

    PubMed  CAS  Google Scholar 

  2. Liu Y, Sato T, O'Rourke B, Marban E: Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97: 2463–2469, 1998

    PubMed  CAS  Google Scholar 

  3. Baines CP, Liu GS, Birincioglu M, Critz SD, Cohen MV, Downey JM: Ischemic preconditioning depends on interaction between mitochondrial KATP channels and actin cytoskeleton. Am J Physiol 276: H1361–H1368, 1999

    PubMed  CAS  Google Scholar 

  4. Minners J, Lacerda L, McCarthy M, Meiring JJ, Yellon DM, Sack MN: Ischemic and pharmacologic preconditioning in girardi cells and C2C12 myotubes induce mitochondrial uncoupling. Circ Research 89: 787–792, 2001

    CAS  Google Scholar 

  5. Ozcan C, Bienengraeber M, Dzeja PP, Terzic A: Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation. Am J Physiol Heart Circ Physiol 282: H531–H539, 2002

    PubMed  CAS  Google Scholar 

  6. Gross GJ, Fryer RM: Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 84: 973–979, 1999

    PubMed  CAS  Google Scholar 

  7. Grimmsmann T, Rustenbeck I: Direct effects of diazoxide on mitochondria in pancreatic B-cells and on isolated liver mitochondria. Br J Pharmacol 123: 781–788, 1998

    Article  PubMed  CAS  Google Scholar 

  8. Ovide-Bordeaux S, Ventura-Clapier R, Veksler V: Do modulators of the mitochondrial K(ATP) channel change the function of mitochondria in situ? J Biol Chem 275: 37291–37295, 2000

    Article  PubMed  CAS  Google Scholar 

  9. Hanley PJ, Mickel M, Loffler M, Brandt U, Daut J: K(ATP) channel-independent targets of diazoxide and 5-hydroxydecanoate in the heart. J Physiol 542: 735–741, 2002

    Article  PubMed  CAS  Google Scholar 

  10. Lim KH, Javadov SA, Das M, Clarke SJ, Suleiman MS, Halestrap AP: The effects of ischaemic preconditioning, diazoxide and 5-hydroxydecanoate on rat heart mitochondrial volume and respiration. J Physiol 545: 961–974, 2002

    Article  PubMed  CAS  Google Scholar 

  11. Das M, Parker JE, Halestrap AP: Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria. J Physiol 547: 893–902, 2003

    Article  PubMed  CAS  Google Scholar 

  12. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM: Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55: 534–543, 2002

    Article  PubMed  CAS  Google Scholar 

  13. Schafer G, Wegener C, Portenhauser R, Bojanovski D: Diazoxide, an inhibitor of succinate oxidation. Biochem Pharmacol 18: 2678–2681, 1969

    Article  PubMed  CAS  Google Scholar 

  14. Hanley PJ, Gopalan KV, Lareau RA, Srivastava DK, von Meltzer M, Daut J: Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J Physiol 547: 387–393, 2003

    Article  PubMed  CAS  Google Scholar 

  15. Inoue I, Nagase H, Kishi K, Higuti T: ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 352: 244–247, 1991

    Article  PubMed  CAS  Google Scholar 

  16. Pham NA, Robinson BH, Hedley DW: Simultaneous detection of mitochondrial respiratory chain activity and reactive oxygen in digitonin-permeabilized cells using flow cytometry. Cytometry 41: 245–251, 2000

    Article  PubMed  CAS  Google Scholar 

  17. Dos Santos P, Kowaltowski AJ, Laclau MN, Seetharaman S, Paucek P, Boudina S, Thambo JB, Tariosse L, Garlid KD: Mechanisms by which opening the mitochondrial ATP- sensitive K(+) channel protects the ischemic heart. Am J Physiol Heart Circ Physiol 283: H284–H295, 2002

    PubMed  CAS  Google Scholar 

  18. Esumi K, Nishida M, Shaw D, Smith TW, Marsh JD: NADH measurements in adult rat myocytes during simulated ischemia. Am J Physiol 260: H1743–H1752, 1991

    PubMed  CAS  Google Scholar 

  19. Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB: bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74: 597–608, 1993

    Article  PubMed  CAS  Google Scholar 

  20. Baines CP, Cohen MV, Downey JM: Signal transduction in ischemic preconditioning: the role of kinases and mitochondrial K(ATP) channels. J. Cardiovasc. Electrophysiol. 10: 741–754, 1999

    PubMed  CAS  Google Scholar 

  21. Forbes RA, Steenbergen C, Murphy E: Diazoxide-induced cardioprotection requires signaling through a redox- sensitive mechanism. Circ Res 88: 802–809., 2001

    PubMed  CAS  Google Scholar 

  22. Kushnareva YE, Murphy AN, Andreyev AY: Complex I mediated reactive oxygen species generation: Modulation by Cytochrome c and NAD(P)+ oxidation-reduction state. Biochem J 368: 545–553, 2002

    Article  PubMed  CAS  Google Scholar 

  23. Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P: Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by an ROS-mediated mechanism. J Biol Chem: 278: 37832–37839., 2003

    Article  PubMed  CAS  Google Scholar 

  24. Dzeja PP, Holmuhamedov EL, Ozcan C, Pucar D, Jahangir A, Terzic A: Mitochondria: gateway for cytoprotection. Circ Res 89: 744–746., 2001

    PubMed  CAS  Google Scholar 

  25. Liu Y, O'Rourke B: Opening of mitochondrial K(ATP) channels triggers cardioprotection. Are reactive oxygen species involved? Circ Res 88: 750–752., 2001

    PubMed  CAS  Google Scholar 

  26. Liu Y, Sato T, Seharaseyon J, Szewczyk A, O'Rourke B, Marban E: Mitochondrial ATP-dependent potassium channels. Viable candidate effectors of ischemic preconditioning. Ann N Y Acad Sci 874: 27–37, 1999

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, Nakaya H: Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation 107: 682–685, 2003

    Article  PubMed  CAS  Google Scholar 

  28. Szewczyk A, Marban E: Mitochondria: a new target for K channel openers? Trends Pharmacol Sci 20: 157–161, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Irani K: Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 87: 179–183, 2000

    PubMed  CAS  Google Scholar 

  30. Cino M, Del Maestro RF: Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch Biochem Biophys 269: 623–638, 1989

    Article  PubMed  CAS  Google Scholar 

  31. Cai J, Jones DP: Mitochondrial redox signaling during apoptosis. J Bioenerg Biomembr 31: 327–334, 1999

    Article  PubMed  CAS  Google Scholar 

  32. Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT: Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273: 18092–18098., 1998

    Article  PubMed  CAS  Google Scholar 

  33. Riepe MW, Niemi WN, Megow D, Ludolph AC, Carpenter DO: Mitochondrial oxidation in rat hippocampus can be preconditioned by selective chemical inhibition of succinic dehydrogenase. Exp Neurol 138: 15–21, 1996

    Article  PubMed  CAS  Google Scholar 

  34. Park JW, Chun YS, Kim YH, Kim CH, Kim MS: Ischemic preconditioning reduces Op6 generation and prevents respiratory impairment in the mitochondria of post-ischemic reperfused heart of rat. Life Sci 60: 2207–2219, 1997

    Article  PubMed  CAS  Google Scholar 

  35. Rakhit RD, Mojet MH, Marber MS, Duchen MR: Mitochondria as targets for nitric oxide-induced protection during simulated ischemia and reoxygenation in isolated neonatal cardiomyocytes. Circulation 103: 2617–2623, 2001

    PubMed  CAS  Google Scholar 

  36. Moncada S, Erusalimsky JD: Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol 3: 214–220, 2002

    Article  PubMed  CAS  Google Scholar 

  37. Minners J, van den Bos EJ, Yellon DM, Schwalb H, Opie LH, Sack MN: Dinitrophenol, cyclosporin A, and trimetazidine modulate preconditioning in the isolated rat heart: support for a mitochondrial role in cardioprotection. Cardiovasc Res 47: 68–73, 2000

    Article  PubMed  CAS  Google Scholar 

  38. Dzeja PP, Bast P, Ozcan C, Valverde A, Holmuhamedov EL, Van Wylen DG, Terzic A: Targeting nucleotide-requiring enzymes: implications for diazoxide-induced cardioprotection. Am J Physiol Heart Circ Physiol 284: H1048–H1056, 2003

    PubMed  CAS  Google Scholar 

  39. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T: Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20: 7311–7318, 2000

    Article  PubMed  CAS  Google Scholar 

  40. Chen W, Gabel S, Steenbergen C, Murphy E: A redox-based mechanism for cardioprotection induced by ischemic preconditioning in perfused rat heart. Circ Res 77: 424–429, 1995

    PubMed  CAS  Google Scholar 

  41. Gopalakrishna R, Anderson WB: Ca2+- and phospholipid-independent activation of protein kinase C by selective oxidative modification of the regulatory domain. Proc Natl Acad Sci U S A 86: 6758–6762, 1989

    Article  PubMed  CAS  Google Scholar 

  42. Tokube K, Kiyosue T, Arita M: Openings of cardiac KATP channel by oxygen free radicals produced by xanthine oxidase reaction. Am J Physiol 271: H478–H489, 1996

    PubMed  CAS  Google Scholar 

  43. Grigoriev SM, Skarga YY, Mironova GD, Marinov BS: Regulation of mitochondrial KATP channel by redox agents. Biochim Biophys Acta 1410: 91–96, 1999

    Article  PubMed  CAS  Google Scholar 

  44. Minners J, McLeod CJ, Sack MN: Mitochondrial plasticity in classical ischemic preconditioning-moving beyond the mitochondrial KATP channel. Cardiovasc Res 59: 1–6, 2003

    Article  PubMed  CAS  Google Scholar 

  45. da Silva MM, Sartori A, Belisle E, Kowaltowski AJ: Ischemic preconditioning inhibits mitochondrial respiration, increases H2O2 release, and enhances K+ transport. Am J Physiol Heart Circ Physiol 285: H154–H162, 2003

    PubMed  CAS  Google Scholar 

  46. Brand MD, Esteves TC: Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2: 85–93, 2005

    Article  PubMed  CAS  Google Scholar 

  47. McLeod CJ, Aziz A, Hoyt RF, Jr., McCoy JP, Jr., Sack MN: Uncoupling proteins 2 and 3 function in concert to augment tolerance to cardiac ischemia. J Biol Chem 280: 33470–33476, 2005

    Article  PubMed  CAS  Google Scholar 

  48. Rodrigo GC, Lawrence CL, Standen NB: Dinitrophenol pretreatment of rat ventricular myocytes protects against damage by metabolic inhibition and reperfusion. J Mol Cell Cardiol 34: 555–569, 2002

    Article  PubMed  CAS  Google Scholar 

  49. Teshima Y, Akao M, Jones SP, Marban E: Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93: 192–200, 2003

    Article  PubMed  CAS  Google Scholar 

  50. Bienengraeber M, Ozcan C, Terzic A: Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. J Mol Cell Cardiol 35: 861–865, 2003

    Article  PubMed  CAS  Google Scholar 

  51. Tarpey MM, Fridovich I: Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89: 224–236, 2001

    PubMed  CAS  Google Scholar 

  52. Ferranti R, da Silva MM, Kowaltowski AJ: Mitochondrial ATP-sensitive K+ channel opening decreases reactive oxygen species generation. FEBS Lett 536: 51–55, 2003

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N. Sack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minners, J., Lacerda, L., Yellon, D.M. et al. Diazoxide-induced respiratory inhibition – a putative mitochondrial KATP channel independent mechanism of pharmacological preconditioning. Mol Cell Biochem 294, 11–18 (2007). https://doi.org/10.1007/s11010-005-9066-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-005-9066-6

Keywords

Navigation