Skip to main content
Log in

Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum)

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

High salt stress involves ionic stress as well as osmotic stress. In this work we have tried to differentiate between the ionic and osmotic effects of salt stress on the basis of their ability to cause changes in PS II heterogeneity. PS II heterogeneity is found to vary with environmental conditions. Osmotic stress caused no change in the QB reducing side heterogeneity and a reversible change in antenna heterogeneity. The number of QB non-reducing centers increased under ionic stress but were unaffected by osmotic stress. On the other hand ionic stress led to a partially irreversible change in QB reducing side heterogeneity and a reversible change in antenna heterogeneity. In response to both ionic and osmotic effect, there is conversion of active PS IIα centres to inactive PSIIβ and γ centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Murata N (2000a) Inactivation of photosystems I and II in response to osmotic stress in Synechococcus: contribution of water channels. Plant Physiol 122:1201–1208

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000b) Ionic and osmotic effects of NaCl induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  CAS  Google Scholar 

  • Andersson JM, Melis A (1983) Localization of different photosystems in separate regions of chloroplast membranes. Proc Natl Acad Sci USA 80:745–749

    Article  Google Scholar 

  • Black MT, Brearley TH, Horton P (1986) Heterogeneity in chloroplast photosystem II. Photosynth Res 89:193–207

    Article  Google Scholar 

  • Boisvert S, Joly D, Carpentier R (2006) Quantitative analysis of O-J-I-P chlorophyll fluorescence induction kinetics, Apparent activation energy and origin of each kinetic step. FEBS J 273:4770–4777

    Article  CAS  Google Scholar 

  • Cao J, Govindjee (1990) Chlorophyll a fluorescence transients as an indicator of active and inactive photosystem II in thylakoid membranes. Biochim Biophys Acta 1015:180–188

    Article  CAS  Google Scholar 

  • Doschek WW, Kok B (1972) Photon trapping in photosystem II of photosynthesis. The fluorescence rise curve in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Biophys J 12:832–838

    Article  CAS  Google Scholar 

  • Force L, Critchley C, van Rensen JJS (2003) New fluorescence parameters for monitoring photosynthesis in plants 1. The effect of illumination on the fluorescence parameters of the JIP-test. Photosynth Res 78:17–33

    Article  CAS  Google Scholar 

  • Gauthier A, Joly D, Boisvert S, Carpentier R (2010) Period-four Modulation of photosystem II primary quinone acceptor (QA) reduction/oxidation kinetics in thylakoid membranes. Photochem Photobiol 86:1064–1070

    Article  CAS  Google Scholar 

  • Graan T, Ort DR (1986) Detection of oxygen-evolving photosystem II centers inactive in plastoquinone reduction. Biochim Biophys Acta 852:320–330

    Article  CAS  Google Scholar 

  • Guenther JE, Melis A (1990) The physiological significance of photosystem II heterogeneity in chloroplasts. Photosynth Res 23:105–109

    Article  CAS  Google Scholar 

  • Guenther JE, Nemson JA, Melis A (1988) Photosystem stoichiometry and chlorophyll antenna size in Dunaliella salina (green algae). Biochim Biophys Acta 934:108–117

    Article  CAS  Google Scholar 

  • Hsu BD, Lee JY (1991) A study on the fluorescence induction curve from DCMU-poisoned choloroplast. Biochim Biophys Acta 1056:285–292

    Article  CAS  Google Scholar 

  • Hsu BD, Lee JY (1995) The Photosystem II heterogeneity of chlorophyll b-deficient mutants of Rice: a Fluorescence Induction Study. Aust J Plant Physiol 22:195–200

    Article  Google Scholar 

  • Hsu BD, Lee YS, Jang YR (1989) A method for analysis of fluorescence induction curve from DCMU-poisoned chloroplasts. Biochim Biophys Acta 975:44–49

    Article  CAS  Google Scholar 

  • Joliot A, Joliot MP (1964) Etude cinetique de la reaction photochimique liberant l oxygene au cours de la photosynthese. R Acad Sci Paris 258:4622–4265

    CAS  Google Scholar 

  • Joly D, Carpentier R (2007) The oxidation/reduction kinetics of the plastoquinone pool controls the appearance of the I-peak in the O–J–I–P chlorophyll fluorescence rise: effects of various electron acceptors. J Photochem Photobiol B: Biol 88:43–50

    Article  CAS  Google Scholar 

  • Joly D, Carpentier R (2009) Sigmoidal reduction kinetics of the photosystem II acceptor side in intact photosynthetic materials during fluorescence induction. Photochem Photobiol Sci 8:167–173

    Article  CAS  Google Scholar 

  • Kalachanis D, Manetas Y (2010) Analysis of fast chlorophyll fluorescence rise [O-K-J-I-P] curves in green fruits indicates electron flow limitations at the donor side of PS II and the acceptor sides of both photosystems. Physiol Plant 139:313–323

    CAS  Google Scholar 

  • Lavergne J (1982) Two types of primary acceptors in chloroplasts photosystem II. Photobiochem Photobiophys 3:257–285

    CAS  Google Scholar 

  • Lavergne J, Briantais JM (1996) Photosystem II heterogeneity. In: Ort RD, Yocum CF (eds) Oxygeneic photosynthesis: the light reactions. Kluwer, Dordrecht, pp 265–287

    Google Scholar 

  • Lazar D, Tomek P, Ilík P, Naus J (2001) Determination of the antenna heterogeneity of PS II by direct simultaneous fitting of several fluorescence rise curves measured with DCMU at different light intensities. Photosynth Res 68:247–257

    Article  CAS  Google Scholar 

  • Mathur S, Allakhverdiev SI, Jajoo A (2011) Analysis of the temperature stress on the dynamic of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum). Biochim Biophys Acta 1807:22–29

    Article  CAS  Google Scholar 

  • Mehta P, Allakhverdiev SI, Jajoo A (2010a) Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynth Res 105:249–255

    Article  CAS  Google Scholar 

  • Mehta P, Jajoo A, Mathur S, Bharti S (2010b) Chlorophyll a fluorescence study reveling effects of high salt stress on photosystem II in wheat leaves. Plant Physiol Biochem 48:16–20

    Article  CAS  Google Scholar 

  • Mehta P, Kraslavsky V, Bharti S, Allahverdiev SI, Jajoo A (2011) Analysis of salt stress induced changes in photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in Wheat (Triticum aestivum) leaves. J Photochem Photobiol B: Biol 104:308–313

    Article  CAS  Google Scholar 

  • Melis A (1985) Functional properties of PS IIβ in spinach chloroplasts. Biochim Biophys Acta 808:334–342

    Article  CAS  Google Scholar 

  • Melis A (1991) Dynamics of photosynthetic membrane composition and function. Biochim Biophys Acta 1058:87–106

    Article  CAS  Google Scholar 

  • Melis A, Duysens LMN (1979) Biphasic energy conversion kinetics and absorbance difference spectra of photosystem II of chloroplasts. Evidence for two different photosystem II reaction centers. Photochem Photobiol 29:373–382

    Article  CAS  Google Scholar 

  • Melis A, Homann PH (1975) Kinetic analysis of the fluorescence induction in 3-(3, 4- dichlorophenyl)-1, 1-dimethylurea poisoned chloroplasts. Photochem Photobiol 21:431–437

    Article  CAS  Google Scholar 

  • Melis A, Homann PH (1976) Heterogeneity of the photochemical centers in system II of chloroplasts. Photochem Photobiol 23:343–350

    Article  CAS  Google Scholar 

  • Morrissey PJ, Glick RE, Melis A (1989) Supramolecular assembly and function of subunits associated with the chlorophyll ab light-harvesting complex II (LHC II) in soybean chloroplasts. Plant Cell Physiol 30:335–344

    CAS  Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421

    Article  CAS  Google Scholar 

  • Schansker G, Strasser RJ (2005) Quantification of non-QB-reducing centers in leaves using a far-red pre-illumination. Photosynth Res 84:145–151

    Article  CAS  Google Scholar 

  • Schreiber U (2002) Assessment of maximal fluorescence yield: donor-side dependent quenching and QB-quenching. In: Kooten OV, Snel JFH (eds) Plant Spectro-fluorometry: applications and basic research. Rozenberg, Amsterdam, pp 23–47

    Google Scholar 

  • Sinclair J, Spence SM (1988) The analysis of fluorescence induction transients from dicholoro-phenyldimehtylurea-poisoned chloroplasts. Biochim Biophys Acta 935:184–194

    Article  CAS  Google Scholar 

  • Strasser RJ (1981) The grouping model of plant photosynthesis: heterogeneity of photosynthetic units in thylakoids Primary reactions of photochemistry in higher plants. In: Akoyunoglou G (ed) Photosynthesis III: structure and molecular organization of the photosynthetic apparatus. Balaban International Science Services, Philadelphia, pp 727–737

    Google Scholar 

  • Strasser RJ, Govindjee (1992) On the O-J-I-P fluorescence transients in leaves and D1 mutants of Chlamydomonas reinhardtii. In: Murata N (ed) Research in photosynthesis. Kluwer, Dordrecht, pp 23–32

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M (1998) Activity and heterogeneity of PS II probed in vivo by the Chlorophyll a fluorescence rise O-[K]-J-I-P. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer, Dordrecht, pp 4321–4324

    Google Scholar 

  • Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms. Regulation and adaptation. Taylor & Francis, London, pp 443–480

    Google Scholar 

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee (eds) Advances in photosynthesis and respiration: Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Dordrecht, pp 321–362

    Google Scholar 

  • Sundby C, Melis A, Mäenpää P, Andersson B (1986) Temperature-dependent changes in the antenna size of photosystem II. Reversible conversion of Photosystem IIα to Photosystem IIβ. Biochim Biophys Acta 851:475–483

    Article  CAS  Google Scholar 

  • Tester M, Davenport RJ (2003) Na+ transport and Na+ tolerance in higher plants. Annals Bot 91:503–527

    Article  CAS  Google Scholar 

  • Thielen APGM, van Gorkom HJ (1981) Electron transport properties of photosystems IIα and IIβ. In: Akoyunogtou G (ed) Photosynthesis, proceedings of the 5th international congress. Balaban International Science Services, Philadelphia, pp 57–64

    Google Scholar 

  • Tongra T, Mehta P, Mathur S, Agrawal D, Bharti S, Los DA, Allakhverdiev SI, Jajoo A (2011) Computational analysis of fluorescence induction curves in intact spinach leaves treated at different pH. Biosystems 103:158–163

    Article  CAS  Google Scholar 

  • Toth SZ, Strasser RJ (2005) The specific rate of QA reduction and photosystem II antenna heterogeneity. Proceedings of the 13th International Congress on Photosynthesis. Montreal, Canada, pp 198–200.

  • Toth SZ, Schansker G, Strasser RJ (2005) In intact leaves, the maximum fluorescence level (Fm) is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study. Biochim Biophys Acta 1708:275–282

    Article  CAS  Google Scholar 

  • Tsimilli-Michael M, Strasser RJ (2008) In vivo assessment of stress impact on plants vitality: Applications in detecting and evaluating the beneficial role of mycorrization on host plants. In: Varma A (ed) Mycorriza. Springer Verlag, Berlin, Heidelberg, pp 679–703

    Chapter  Google Scholar 

  • Tyystjarvi E, Aro EM (1990) Temperature-dependent changes in PSII heterogeneity support a cycle of PSII during photoinhibition. Photosynth Res 26:109–117

    Article  CAS  Google Scholar 

  • Zaghdoudi M, Msilini N, Govindachary S, Lachaal M, Ouerghi Z, Carpentier R (2011) Inhibition of photosystems I and II activities in salt stress-exposed Fenugreek (Trigonella foenum graecum). J Photochem Photobiol B: Biol 105:14–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Jajoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh-Tomar, R., Mathur, S., Allakhverdiev, S.I. et al. Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum aestivum) . J Bioenerg Biomembr 44, 411–419 (2012). https://doi.org/10.1007/s10863-012-9444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9444-1

Keywords

Navigation