Skip to main content

Advertisement

Log in

On the properties of calcium-induced permeability transition in neonatal heart mitochondria

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Permeability transition was examined in heart mitochondria isolated from neonate rats. We found that these mitochondria were more susceptible to Ca2+-induced membrane leakiness than mitochondria from adult rats. In K+ containing medium, at 25 °C, mitochondria were unable to accumulate Ca2+. Conversely, in Na+ containing medium, mitochondria accumulated effectively Ca2+. At 15 °C mitochondria accumulated Ca2+ regardless of the presence of K+. Kinetics of Ca2+ accumulation showed a similar Vmax as that of adult mitochondria. Lipid milieu of inner membrane contained more unsaturated fatty acids than adult mitochondria. Aconitase inhibition and high thiobarbituric acid-reactive substances (TBARS) indicate that oxidative stress caused mitochondrial damage. In addition, proteomics analysis showed that there is a considerable diminution of succinate dehydrogenase C and subunit 4 of cytochrome oxidase in neonate mitochondria. Our proposal is that dysfunction of the respiratory chain makes neonate mitochondria more susceptible to damage by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam-Vizi V, Starkov AA (2010) J Alzheimers Dis Supl 2:S413–S426

    Google Scholar 

  • Bernardi P (1999) Physiol Rev 79:1127–1155

    CAS  Google Scholar 

  • Brierley GP, Jurkowitz M, Chávez E, Jung DW (1977) J Biol Chem 252:7032–7939

    Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Am J Physiol 287:C817–C833

    Article  CAS  Google Scholar 

  • Caplan AI, Carafoli E (1965) Biochim Biophys Acta 104:317–329

    Article  CAS  Google Scholar 

  • Carafoli E (1965) Biochim Biophys Acta 97:99–106

    Article  CAS  Google Scholar 

  • Chávez E, Osornio A (1988) Int J Biochem 20:731–736

    Article  Google Scholar 

  • Chávez E, Moreno-Sánchez R, Zazueta C, Reyes-Vivas H, Arteaga D (1991) Biochim Biophys Acta 1070:461–466

    Article  Google Scholar 

  • Chávez E, Moreno-Sánchez R, Torres-Márquez ME, Rodríguez-Enríquez S, García C, Rodríguez JS, Martínez F (1996) J Bioenerg Biomembr 28:69–78

    Google Scholar 

  • Drahota Z, Milerova M, Stieglerova A, Sharka L, Houstek J, Ostadal B (2005) Cell Biochem Biophys 43:87–94

    Article  CAS  Google Scholar 

  • El Haffidi M, Cuéllar A, Ramírez J, Baños G (2001) J Nutr Biochem 12:396–403

    Article  Google Scholar 

  • Folch L, Lees M, Sloane-Stanley CH (1957) J Biol Chem 226:497–509

    CAS  Google Scholar 

  • García N, Correa F, Chávez E (2005a) J Bioenerg Biomembr 37:17–23

    Article  Google Scholar 

  • García N, Zazueta C, Pavón N, Chávez E (2005b) Mitochondrion 5:272–281

    Article  Google Scholar 

  • García N, Martínez-Abundis E, Pavón N, Chávez E (2006) Comp Biochem Physiol B Biochem Mol Biol 144:442–450

    Article  Google Scholar 

  • Gómez-Puyou A, Sandoval F, Tuena M, Peña A, Chávez E (1969) Biochem Biophys Res Commun 36:316–321

    Article  Google Scholar 

  • Gunter TE, Pfeiffer DR (1990) Am J Physiol 258:C755–C786

    CAS  Google Scholar 

  • Gutierrez-Aguilar M, Pérez-Martínez X, Chávez E, Uribe-Carvajal S (2010) Arch Biochem Biophys 494:184–191

    Article  CAS  Google Scholar 

  • Haghberg H (2004) J Bioenerg Biomembr 36:369–373

    Article  Google Scholar 

  • Halestrap AP, Davidson AM (1990) Biochem J 268:153–160

    CAS  Google Scholar 

  • Hausladen A, Fridovich I (1994) J Biol Chem 269:29405–29408

    CAS  Google Scholar 

  • Haworth RA, Hunter DR (2000) J Bioenerg Biomembr 32:91–96

    Article  CAS  Google Scholar 

  • Igbavboa U, Pfeiffer DR (1991) J Biol Chem 266:4283–4287

    CAS  Google Scholar 

  • Ishii T, Miyazawa M, Hartman PS, Ishii N (2011) BMB Rep 44:298–305

    Article  CAS  Google Scholar 

  • Kauffman RF, Taylor RW, Pfeiffer DR (1980) J Biol Chem 255:2735–2739

    CAS  Google Scholar 

  • Leduck N, Delmas-Beavieux MC, Bourdel-Marchasson I, Dufour S, Gallis JL, Canioni P, Diolez P (1998) Biochem J 336:501–506

    Google Scholar 

  • Leung AW, Varanyuwatana P, Halestrap AP (2008) J Biol Chem 283:26312–26323

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Marín-García J, Ananthakrishnan R, Goldenthal MJ (1997) Biochem Cell Biol 75:132–142

    Article  Google Scholar 

  • McCormack JG, Denton RM (1980) Biochem J 190:95–105

    CAS  Google Scholar 

  • Meriova M, Charvatova Z, Skarka L, Ostadalova I, Dragota Z, Fialova M, Ostadal B (2010) Mol Cell Biochem 335:147–153

    Article  Google Scholar 

  • Muller FL, Liu Y, Van Remmen H (2004) J Biol Chem 279:49064–49073

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Cell Calcium 45:643–650

    Article  CAS  Google Scholar 

  • Peng TI, Jou MJ (2010) Ann N Y Acad Sci 1201:183–188

    Article  CAS  Google Scholar 

  • Pérez-Torres I, Roque P, El Haffidi M, Díaz-Díaz E, Baños G (2009) Free Radic Res 43:761–771

    Article  Google Scholar 

  • Petrosillo G, Ruggiero FM, Pistolese M, Paradies G (2004) J Biol Chem 279:53103–53108

    Article  CAS  Google Scholar 

  • Petrosillo G, Malera M, Casanova G, Ruggiero FM, Paradies G (2008) Neurochem Int 53:126–131

    Article  CAS  Google Scholar 

  • Petrosillo G, Moro N, Paradies V, Ruggiero FM, Paradies G (2010) J Pineal Res 48:340–348

    Article  CAS  Google Scholar 

  • Qian L, Song X, Gong J, Cheng S (2004) Cell Stress Chaperon 9:281–293

    Article  CAS  Google Scholar 

  • Rodríguez-Enríquez S, Gallardo-Pérez JC, Avilés-Salas A, Marín-Hernández A, Carreño-Fuentes L, Maldonado-Lagunas V, Moreno-Sánchez R (2008) J Cell Physiol 216:189–197

    Article  Google Scholar 

  • Scarpa A, Brinley FJ, Tiffert T, Dubyak GR (1978) Ann N Y Acad Sci 307:85–112

    Google Scholar 

  • Uribe A, Chávez E, Jiménez M, Zazueta C, Moreno-Sánchez R (1994) Biochim Biophys Acta 1186:107–116

    Article  CAS  Google Scholar 

  • Wernette ME, Ochs RS, Lardy HA (1981) J Biol Chem 256:12767–12771

    CAS  Google Scholar 

  • Zazueta C, García N, Martínez-Abundis E, Pavón N, Hernández-Esquivel L, Chávez E (2010) J Bioenerg Biomembr 42:381–386

    Article  CAS  Google Scholar 

  • Zoratti M, Szabó I (1995) Biochim Biophys Acta Rev Biomembr 1241:139–176

    Google Scholar 

  • Zoratti M, Szabó I, De Marchi U (2005) Biochim Biophys Acta Bioenerg 1706:40–52

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmundo Chávez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavón, N., Gallardo, J.C., Hernández-Esquivel, L.M. et al. On the properties of calcium-induced permeability transition in neonatal heart mitochondria. J Bioenerg Biomembr 43, 757–764 (2011). https://doi.org/10.1007/s10863-011-9401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-011-9401-4

Keywords

Navigation