Skip to main content
Log in

Operation of the Permeability Transition Pore in Rat Heart Mitochondria in Aging

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The functioning of the mitochondrial permeability transition pore (mPTP) is involved in the mechanism of programmed cell death and mitochondrial dysfunction observed with aging. In this work, the functional state of heart mitochondria isolated from young (mature and 2–3-month-old) and old (20–22-month-old) rats under conditions of mPTP opening was studied. In the mitochondria of old rats, the rates of Ca2+ and TPP+ absorption decreased by 40 and 42%, respectively, the threshold concentration of Ca2+ decreased by 20%, and the swelling rate of mitochondria from old animals was by 40% higher than that of mitochondria from young ones. In the heart mitochondria of old animals, the content and production of reactive oxygen species (ROS) varied, the superoxide anion content was increased, and the level of hydroperoxide (H2O2) increased at a threshold calcium concentration. Electron microscopy revealed a decrease in the number of cristae in mitochondria of the rat heart during aging. To study the potential role of proteins modulating the mPTP functioning, the content of 2',3'-cyclonucleotide-3'-phosphodiesterase (CNPase) and translocator protein (TSPO) in the heart mitochondria of rats of different ages was measured. A significant age-related decrease in the level of CNPase and an increase in the amount of TSPO were detected. The role of these proteins in mitochondrial dysfunction observed during aging is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rezin G.T., Amboni G., Zugno A.I., Quevedo J., Streck E.L. 2009. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res. 34 (6), 1021–1029.

    Article  PubMed  CAS  Google Scholar 

  2. Lopez-Otin C., Blasco M. A., Partridge L., Serrano M., Kroemer G. 2013. The hallmarks of aging. Cell. 153 (6), 1194–1217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Miquel J., Economos A.C., Fleming J., Johnson J.E., Jr. 1980. Mitochondrial role in cell aging. Exp. Gerontol. 15 (6), 575–591.

    Article  PubMed  CAS  Google Scholar 

  4. Szalai G., Krishnamurthy R., Hajnoczky G. 1999. Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J. 18 (22), 6349–6361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Di Lisa F., Bernardi P. 2005. Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc. Res. 66 (2), 222–232.

    PubMed  Google Scholar 

  6. Baines C.P., Kaiser R.A., Purcell N.H., Blair N.S., Osinska H., Hambleton M.A., Brunskill E.W., Sayen M.R., Gottlieb R.A., Dorn G.W., Robbins J., Molkentin J.D. 2005. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 434 (7033), 658–662.

    Article  PubMed  CAS  Google Scholar 

  7. Baines C.P., Kaiser R.A., Sheiko T., Craigen W.J., Molkentin J.D. 2007. Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat. Cell Biol. 9 (5), 550–555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kokoszka J.E., Waymire K.G., Levy S.E., Sligh J.E., Cai J., Jones D.P., MacGregor G.R., Wallace D.C. 2004. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. 427 (6973), 461–465.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Basile A.S., Skolnick P. 1986. Subcellular localization of “peripheral-type” binding sites for benzodiazepines in rat brain. J. Neurochem. 46 (1), 305–308.

    Article  PubMed  CAS  Google Scholar 

  10. Casellas P., Galiegue S., Basile A.S. 2002. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem. Int. 40 (6), 475–486.

    Article  PubMed  CAS  Google Scholar 

  11. Papadopoulos V., Baraldi M., Guilarte T.R., Knudsen T.B., Lacapere J.J., Lindemann P., Norenberg M.D., Nutt D., Weizman A., Zhang M.R., Gavish M. 2006. Translocator protein (18kDa): New nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function. Trends Pharmacol. Sci. 27 (8), 402–409.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar A., Muzik O., Shandal V., Chugani D., Chakraborty P., Chugani H.T. 2012. Evaluation of agerelated changes in translocator protein (TSPO) in human brain using (11)C-[R]-PK11195 PET. J. Neuroinflammation. 9, 232.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Azarashvili T., Grachev D., Krestinina O., Evtodienko Y., Yurkov I., Papadopoulos V., Reiser G. 2007. The peripheral-type benzodiazepine receptor is involved in control of Ca2+-induced permeability transition pore opening in rat brain mitochondria. Cell Calcium. 42 (1), 27–39.

    Article  PubMed  CAS  Google Scholar 

  14. Azarashvili T., Krestinina O., Galvita A., Grachev D., Baburina Y., Stricker R., Evtodienko Y., Reiser G. 2009. Ca2+-dependent permeability transition regulation in rat brain mitochondria by 2',3'-cyclic nucleotides and 2',3'-cyclic nucleotide 3'-phosphodiesterase. Am. J. Physiol. Cell Physiol. 296 (6), C1428–1439.

    Article  PubMed  CAS  Google Scholar 

  15. Giulian D., Moore S. 1980. Identification of 2':3'-cyclic nucleotide 3'-phosphodiesterase in the vertebrate retina. J. Biol. Chem. 255 (13), 5993–5995.

    PubMed  CAS  Google Scholar 

  16. Dreiling C.E., Schilling R.J., Reitz R.C. 1981. 2',3'-cyclic nucleotide 3'-phosphohydrolase in rat liver mitochondrial membranes. Biochim. Biophys. Acta. 640 (1), 114–120.

    Article  PubMed  CAS  Google Scholar 

  17. Dyer C.A., Benjamins J.A. 1989. Organization of oligodendroglial membrane sheets. I: Association of myelin basic protein and 2',3'-cyclic nucleotide 3'-phosphohydrolase with cytoskeleton. J. Neurosci. Res. 24 (2), 201–211.

    PubMed  CAS  Google Scholar 

  18. Lee J., O’Neill R.C., Park M.W., Gravel M., Braun P.E. 2006. Mitochondrial localization of CNP2 is regulated by phosphorylation of the N-terminal targeting signal by PKC: Implications of a mitochondrial function for CNP2 in glial and non-glial cells. Mol. Cell Neurosci. 31 (3), 446–462.

    Article  PubMed  CAS  Google Scholar 

  19. Azarashvili T., Krestinina O., Galvita A., Grachev D., Baburina Y., Stricker R., Reiser G. 2014. Identification of phosphorylated form of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) as 46 kDa phosphoprotein in brain non-synaptic mitochondria overloaded by calcium. J. Bioenerg. Biomembr. 46 (2), 135–145.

    Article  PubMed  CAS  Google Scholar 

  20. Azarashvili T.S., Baburina Yu.L., Krestinina O.V., Odinokova I.V., Akatov V.S. 2016. Role of VDAC and TSPO in the regulation of mitochondrial membrane permeability. In: Mitokhondrial’nye pory, kanaly i ustoychivost kletok k povrezhdayushchim deystviaym (Mito chondrial pores, channels, and cell resistance to injuries). Pushchino: Sinkhrobuk, pp. 12–23.

    Google Scholar 

  21. Krestinina O.V., Kruglov A.G., Grachev D.E., Baburina Y.L., Evtodienko Y.V., Moshkov D.A., Santalova I.M., Azarashvili T.S. 2010. Age-related changes of mitochondrial functions under the conditions of Ca2+-induced opening of permeability transition pore. Biol. Membrany (Rus.). 27 (2), 177–183.

    CAS  Google Scholar 

  22. Paradies G., Petrosillo G., Pistolese M., Di Venosa N., Federici A., Ruggiero F.M. 2004. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: Involvement of reactive oxygen species and cardiolipin. Circ. Res. 94 (1), 53–59.

    Article  PubMed  CAS  Google Scholar 

  23. Reiser G., Kunzelmann U., Steinhilber G., Binmoller F.J. 1994. Generation of a monoclonal antibody against the myelin protein CNP (2',3'-cyclic nucleotide 3'-phosphodiesterase) suitable for biochemical and for immunohistochemical investigations of CNP. Neurochem. Res. 19 (12), 1479–1485.

    Article  PubMed  CAS  Google Scholar 

  24. Kambayashi Y., Ogino K. 2003. Reestimation of Cypridina luciferin analogs (MCLA) as a chemiluminescence probe to detect active oxygen species–cautionary note for use of MCLA. J. Toxicol. Sci. 28 (3), 139–148.

    Article  PubMed  CAS  Google Scholar 

  25. Nikiforova A.B., Saris N.E., Kruglov A.G. 2014. External mitochondrial NADH-dependent reductase of redox cyclers: VDAC1 or Cyb5R3? Free Radic. Biol. Med. 74, 74–3

    Article  PubMed  CAS  Google Scholar 

  26. Mather M., Rottenberg H. 2000. Aging enhances the activation of the permeability transition pore in mitochondria. Biochem. Biophys. Res. Commun. 273 (2), 603–608.

    Article  PubMed  CAS  Google Scholar 

  27. Petrosillo G., Moro N., Paradies V., Ruggiero F.M., Paradies G. 2010. Increased susceptibility to Ca2+-induced permeability transition and to cytochrome c release in rat heart mitochondria with aging: Effect of melatonin. J. Pineal. Res. 48 (4), 340–346.

    Article  PubMed  CAS  Google Scholar 

  28. Krestinina O., Azarashvili T., Baburina Y., Galvita A., Grachev D., Stricker R., Reiser G. 2015. In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. Neurochem. Int. 80, 41–3

    Article  PubMed  CAS  Google Scholar 

  29. Wang W.J., Crompton R.H. 2004. Analysis of the human and ape foot during bipedal standing with implications for the evolution of the foot. J. Biomech. 37 (12), 1831–1836.

    Article  PubMed  CAS  Google Scholar 

  30. Gredilla R., Phaneuf S., Selman C., Kendaiah S., Leeuwenburgh C., Barja G. 2004. Short-term caloric restriction and sites of oxygen radical generation in kidney and skeletal muscle mitochondria. Ann. N.Y. Acad. Sci. 1019, 333–3

    Article  PubMed  CAS  Google Scholar 

  31. Wang W., Fang H., Groom L., Cheng A., Zhang W., Liu J., Wang X., Li K., Han P., Zheng M., Yin J., Wang W., Mattson M.P., Kao J.P., Lakatta E.G., Sheu S.S., Ouyang K., Chen J., Dirksen R.T., Cheng H. 2008. Superoxide flashes in single mitochondria. Cell. 134 (2), 279–290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Fang H., Chen M., Ding Y., Shang W., Xu J., Zhang X., Zhang W., Li K., Xiao Y., Gao F., Shang S., Li J.C., Tian X.L., Wang S.Q., Zhou J., Weisleder N., Ma J., Ouyang K., Chen J., Wang X., Zheng M., Wang W., Zhang X., Cheng H. 2011. Imaging superoxide flash and metabolism-coupled mitochondrial permeability transition in living animals. Cell Res. 21 (9), 1295–1304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ma Q., Fang H., Shang W., Liu L., Xu Z., Ye T., Wang X., Zheng M., Chen Q., Cheng H. 2011. Superoxide flashes: Early mitochondrial signals for oxidative stressinduced apoptosis. J. Biol. Chem. 286 (31), 27573–27581.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hou T., Zhang X., Xu J., Jian C., Huang Z., Ye T., Hu K., Zheng M., Gao F., Wang X., Cheng H. 2013. Synergistic triggering of superoxide flashes by mitochondrial Ca2+ uniport and basal reactive oxygen species elevation. J. Biol. Chem. 288 (7), 4602–4612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ozturk G., Akbulut K.G., Guney S., Acuna-Castroviejo D. 2012. Age-related changes in the rat brain mitochondrial antioxidative enzyme ratios: Modulation by melatonin. Exp. Gerontol. 47 (9), 706–711.

    Article  PubMed  CAS  Google Scholar 

  36. Carrillo M.C., Kanai S., Sato Y., Kitani K. 1992. Agerelated changes in antioxidant enzyme activities are region and organ, as well as sex, selective in the rat. Mech. Ageing Dev. 65 (2–3), 187–198.

    Article  PubMed  CAS  Google Scholar 

  37. Meng Q., Wong Y.T., Chen J., Ruan R. 2007. Agerelated changes in mitochondrial function and antioxidative enzyme activity in fischer 344 rats. Mech. Ageing Dev. 128 (3), 286–292.

    Article  PubMed  CAS  Google Scholar 

  38. Sanz A., Caro P., Ibanez J., Gomez J., Gredilla R., Barja G. 2005. Dietary restriction at old age lowers mitochondrial oxygen radical production and leak at complex I and oxidative DNA damage in rat brain. J. Bioenerg. Biomembr. 37 (2), 83–90.

    Article  PubMed  CAS  Google Scholar 

  39. Sanz A., Pamplona R., Barja G. 2006. Is the mitochondrial free radical theory of aging intact? Antioxid. Redox Signal. 8 (3–4), 582–599.

    Article  PubMed  CAS  Google Scholar 

  40. Petrosillo G., Matera M., Casanova G., Ruggiero F.M., Paradies G. 2008. Mitochondrial dysfunction in rat brain with aging Involvement of complex I, reactive oxygen species and cardiolipin. Neurochem. Int. 53 (5), 126–131.

    Article  PubMed  CAS  Google Scholar 

  41. Kudin A.P., Malinska D., Kunz W.S. 2008. Sites of generation of reactive oxygen species in homogenates of brain tissue determined with the use of respiratory substrates and inhibitors. Biochim. Biophys. Acta. 1777(7–8), 689–695.

    Article  PubMed  CAS  Google Scholar 

  42. Yang L.J., Kan E.M., Lu J., Wu C.Y., Ling E.A. 2014. Expression of 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) and its roles in activated microglia in vivo and in vitro. J. Neuroinflamm. 11, 148.

    Article  CAS  Google Scholar 

  43. Krestinina O., Azarashvili T., Baburina Y., Galvita A., Grachev D., Stricker R., Reiser G. 2015. In aging, the vulnerability of rat brain mitochondria is enhanced due to reduced level of 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNP) and subsequently increased permeability transition in brain mitochondria in old animals. Neurochemistry international. 80, 41–3

    Article  PubMed  CAS  Google Scholar 

  44. Baburina Y.L., Gordeeva A.E., Moshkov D.A., Krestinina O.V., Azarashvili A.A., Odinokova I.V., Azarashvili T.S. 2014. Interaction of myelin basic protein and 2',3'-cyclic nucleotide phosphodiesterase with mitochondria. Biochemistry (Moscow). 79 (6), 555–565.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Krestinina.

Additional information

Original Russian Text © I.V. Odinokova, Yu.L. Baburina, A.G. Kruglov, I.M. Santalova, T.S. Azarashvili, O.V. Krestinina, 2018, published in Biologicheskie Membrany, 2018, Vol. 35, No. 1, pp. 42–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odinokova, I.V., Baburina, Y.L., Kruglov, A.G. et al. Operation of the Permeability Transition Pore in Rat Heart Mitochondria in Aging. Biochem. Moscow Suppl. Ser. A 12, 137–145 (2018). https://doi.org/10.1134/S1990747818020101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747818020101

Keywords

Navigation