Skip to main content
Log in

An Inception Report on the TOM Complex of the Amoeba Acanthamoeba castellanii, a Simple Model Protozoan in Mitochondria Studies

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

It is suggested that in the course of the TOM complex evolution at least two lineages have appeared: the animal–fungal and green plant ones. The latter involves also the TOM complexes of algae and protozoans. The amoeba Acanthamoeba castellanii is a free-living nonphotosynthetic soil protozoan, whose mitochondria share many bioenergetic properties with mitochondria of plants, animals and fungi. Here, we report that a protein complex, identified electrophysiologically as the A. castellanii TOM complex, contains a homologue of yeast/animal Tom70. Further, molecular weight of the complex (about 500 kDa) also points to A. castellanii evolutionary relation with fungi and animal. Thus, the data indicates that the TOM complex of A. castellanii is not a typical example of the protozoan TOM complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DDM:

n-dodecyl β-d-maltoside

DHFR:

dihydrofolate reductase

ES-MS/MS:

electrospray ionization tandem mass spectrometry

MALDI-MS:

matrix-assisted laser desorption/ionization mass spectrometry

MOPS:

4-morpholinopropanesulfonic acid

TOM:

translocase of the outer membrane

VDAC:

voltage-dependent anion-selective channel

References

  • Ahting, U., Thieffry, M., Engelhardt, H., Hegerl, R., Neupert, W., and Nussberger, S. (2001). J. Cell Biol. 153, 1151–1160.

    Article  PubMed  Google Scholar 

  • Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F. E., Neupert, W., and Nussberger, S. (1999). J. Cell Biol. 147, 959–968.

    Article  PubMed  Google Scholar 

  • Antos, N., Budzinska, M., and Kmita, H. (2001). FEBS Lett. 500, 12–16.

    Article  PubMed  Google Scholar 

  • Benz, R. (1994). Biochim. Biophys. Acta 1197, 167–196.

    PubMed  Google Scholar 

  • Benz, R., Janko, K., Boos, W., and Lauger, P. (1978). Biochim. Biophys. Acta 511, 305–319.

    PubMed  Google Scholar 

  • Blachly-Dyson, E., Song, J., Wolfgang, W. J., Colombini, M., and Forte, M. (1997). Mol. Cell. Biol. 17, 5727–5738.

    PubMed  Google Scholar 

  • Braun, H. P., and Schmitz, U. K. (1998). Planta 209, 267–274.

    Article  Google Scholar 

  • Burger, G., Lang, B. F., Braun, H. P., and Marx, S. (2003). Nucleic Acids Res. 31, 2353–2360.

    Article  PubMed  Google Scholar 

  • Das, A. K., Cohen, P. W., and Barford, D. (1998). EMBO J. 17, 1192–1199.

    Article  PubMed  Google Scholar 

  • Daum, G., Bohni, P. C., and Schatz, G. (1982). J. Biol. Chem. 257, 13028–13033.

    PubMed  Google Scholar 

  • De Pinto, V., Ludwig, O., Krause, J., Benz, R., and Palmieri, F. (1987). Biochim. Biophys. Acta 894, 109–119.

    PubMed  Google Scholar 

  • Dekker, P. J. T., Ryan, M. T., Brix, J., Müller, A., Hönlinger, A., and Pfanner, N. (1998). Mol. Cell. Biol. 18, 6515–6524.

    PubMed  Google Scholar 

  • Douce, R., Bourguignon, R., and Neuberger, M. (1984). Methods Enzymol. 148, 403–415.

    Google Scholar 

  • Gabriel, K., Egan, B., and Lithgow, T. (2003). EMBO J. 22, 2380–2386.

    Article  PubMed  Google Scholar 

  • Gray, M. W., Burger, G., and Lang, B. F. (1999). Science 382, 1476–1481.

    Article  Google Scholar 

  • Hill, K., Model, K., Ryan, M. T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Nature 395, 516–521.

    Article  PubMed  Google Scholar 

  • Hoogenraad, N. J., Ward, L. A., and Ryan, M. T. (2002). Biochim. Biophys. Acta 1592, 97–105.

    Article  PubMed  Google Scholar 

  • Jänsch, L., Kruft, V., Schmitz, U. K., and Braun, H. P. (1998). J. Biol. Chem. 273, 17251–17257.

    Article  PubMed  Google Scholar 

  • Jarmuszkiewicz, W., Sluse-Goffart, C. M., Vercesi, A. E., and Sluse, F. E. (2001). Biosci. Rep. 21, 213–222.

    Article  PubMed  Google Scholar 

  • Jarmuszkiewicz, W., Wagner, A. M., Wagner, M. J., and Hryniewiecka, L. (1997). FEBS Lett. 411, 110–114.

    Article  PubMed  Google Scholar 

  • Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. J. (1979). J. Membr. Biol. 49, 105–121.

    Article  PubMed  Google Scholar 

  • Künkele, K.-P., Heins, S., Dembowski, M., Nargang, F. E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998a). Cell 93, 1009–1019.

    Article  Google Scholar 

  • Künkele, K.-P., Juin, P., Pompa, C., Nargang, F. E., Henry, J.-P., Neupert, W., Lill, R., and Thieffry, M. (1998b). J. Biol. Chem. 273, 31032–31039.

    Article  Google Scholar 

  • Lee, A. C., Xu, X., Blachly-Dyson, E., Forte, M., and Colombini, M. (1998). J. Membr. Biol. 161, 173–181.

    Article  PubMed  Google Scholar 

  • Lill, R., and Neupert, W. (1996). Trends Cell. Biol. 6, 56–61.

    Article  PubMed  Google Scholar 

  • Macasev, D., Newbigin, E., Whelan, J., and Lithgow, T. (2000). Plant Physiol. 123, 811–816.

    Article  PubMed  Google Scholar 

  • Macasev, D., Whelan, J., Newbigin, E., Silva-Filho, M. C., Mulhern, T. D., and Lithgow, T. (2004). Mol. Biol. Evol. 21, 1557–1564.

    Article  PubMed  Google Scholar 

  • Mangan, P. S., and Colombini, M. (1987). Proc Natl Acad Sci USA 84, 4896–900.

    PubMed  Google Scholar 

  • Meisinger, C., Brix, J., Model, K., Pfanner, N., and Ryan, M. T. (1999). Cell. Mol. Life Sci. 56, 817–824.

    Article  PubMed  Google Scholar 

  • Meisinger, C., Ryan, M. T., Hill, K., Model, K., Lim, J. H., Sickmann, A., Müller, H., Meyer, H. E., Wagner, R., and Pfanner, N. (2001). Mol. Cell. Biol. 21, 2337–2348.

    Article  PubMed  Google Scholar 

  • Model, K., Prinz, T., Ruiz, T., Radermacher, M., Krimmer, T., Kühlbrandt, W., Pfanner, N., and Meisinger, C. (2002). J. Mol. Biol. 316, 657–666.

    Article  PubMed  Google Scholar 

  • Mori, M., and Terada, K. (1998). Biochim. Biophys. Acta 1403, 12–27.

    Article  PubMed  Google Scholar 

  • Neff, R. J., and Neff, R. H. (1964). In Methods in Cell Physiology, (Prescott, D., ed.), Academic Press, New York, pp. 213–245.

    Google Scholar 

  • Paschen, S. A., and Neupert, W. (2001). IUBMB Life 52, 101–112.

    PubMed  Google Scholar 

  • Pfanner, N., and Chacinska, A. (2002). Biochim. Biohys. Acta 1592, 15–24.

    Article  Google Scholar 

  • Rapaport, D. (2002). Trends Biochem. Sci. 27, 191–197.

    Article  PubMed  Google Scholar 

  • Rehling, P., Pfanner, N., and Meisinger, C. (2003). J. Miol. Biol. 326, 639–657.

    Article  Google Scholar 

  • Saeki, K., Suzuki, H., Tsuneoka, M., Maeda, M., Iwamoto, R., Hasuwa, H., Shida, S., Takahashi, T., Sakaguchi, M., Endo, T., Miura, Y., Mekada, E., and Mihara, K. (2000). J. Biol. Chem. 275, 31996–32002.

    Article  PubMed  Google Scholar 

  • Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedi, R., Meyer, H. E., Schönfisch, B., Perschil, I., Chacinska, A., Guiard, B., Rehling, P., Pfanner, N., and Meisinger, C. (2003). Proc. Nat. Acad. Sci. 100, 13207–13212.

    Article  PubMed  Google Scholar 

  • Sluse, F. E. and Jarmuszkiewicz, W. (2001). In Handbook of plant growth: pH as the master variable, (Rengel., Z., ed.), Marcel Dekker, Inc., New York, Basel, pp. 173–209.

    Google Scholar 

  • Stobienia, O., Wróblewska, S., Antos, N., Budzińska, M., and Kmita, H. (2002). J. Bioenerg. Biomembr. 34, 507–516.

    Article  PubMed  Google Scholar 

  • Suzuki, H., Maeda, M., and Mihara, K. (2002). J. Cell. Sci. 115, 1895–1905.

    Article  PubMed  Google Scholar 

  • Suzuki, H., Okazawa, Y., Komiya, T., Saeki, K., Mekada, E., Kitada, S., Ito, A., and Mihara, K. (2000). J. Biol. Chem. 275, 37930–37936.

    Article  PubMed  Google Scholar 

  • Taylor, R. D., McHale, B. J., and Nargang, F. E. (2003). J. Biol. Chem. 278, 765–775.

    Article  PubMed  Google Scholar 

  • Terada, K., Ueno, S., Yomogida, K., Imai, T., Kiyonari, H., Tekada, N., Abe, S., Aizawa, S., and Mori, M. (2003). J. Biochem. 133, 625–631.

    Article  PubMed  Google Scholar 

  • Van Wilpe, S., Ryan, M. T., Hill, K., Maarse, A. C., Meisinger, C., Brix, J., Dekker, P. J., Moczko, M., Wagner, R., Meijer, M., Guiard, B., Hönlinger, A., and Pfanner, N. (1999). Nature 401, 485–489.

    Article  PubMed  Google Scholar 

  • Wainright, P. O., Hinkle, G., Sogin, M. L., and Stickel, S. K. (1993). Science 260, 340–342.

    PubMed  Google Scholar 

  • Werhahn, W., and Braun, H. P. (2002). Electrophoresis 23, 640–646.

    Article  PubMed  Google Scholar 

  • Werhahn, W., Niemeyer, A., Jänsch, L., Kruft, V., Schmitz, U. K., and Braun, H. P. (2001). Plant Physiol. 125, 943–954.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Kmita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wojtkowska, M., Szczech, N., Stobienia, O. et al. An Inception Report on the TOM Complex of the Amoeba Acanthamoeba castellanii, a Simple Model Protozoan in Mitochondria Studies. J Bioenerg Biomembr 37, 261–268 (2005). https://doi.org/10.1007/s10863-005-6636-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-005-6636-y

Keywords

Navigation