Skip to main content
Log in

Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127(37):12965–12974. doi:10.1021/ja0530164

    Article  Google Scholar 

  • Arora A, Tamm LK (2001) Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11(5):540–547. doi:10.1016/S0959-440X(00)00246-3

  • Auger M (2000) Biological membrane structure by solid-state NMR. Curr Issues Mol Biol 2(4):119–124

    MathSciNet  Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476(7358):109–113. doi:10.1038/nature10257

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108(26):10396–10399. doi:10.1073/pnas.1103854108

    Article  ADS  Google Scholar 

  • Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E (2012a) On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54(2):123–127. doi:10.1007/s10858-012-9657-y

    Article  Google Scholar 

  • Bertini I, Engelke F, Luchinat C, Parigi G, Ravera E, Rosa C, Turano P (2012b) NMR properties of sedimented solutes. Phys Chem Chem Phys 14(2):439–447. doi:10.1039/c1cp22978h

    Article  Google Scholar 

  • Bibow S, Carneiro MG, Sabo TM, Schwiegk C, Becker S, Riek R, Lee D (2014) Measuring membrane protein bond orientations in nanodiscs via residual dipolar couplings. Protein Sci. doi:10.1002/pro.2482

    Google Scholar 

  • Birdsall NJM, Feeney J, Lee AG, Levine YK, Metcalfe JC (1972) Dipalmitoyl-lecithin: assignment of the 1H and 13C nuclear magnetic resonance spectra, and conformational studies. J Chem Soc Perkin Trans 2(10):1441–1445. doi:10.1039/P29720001441

    Article  Google Scholar 

  • Bloom M, Burnell EE, Roeder SBW, Valic MI (1977) Nuclear magnetic resonance line shapes in lyotropic liquid crystals and related systems. J Chem Phys 66(7):3012–3020. doi:10.1063/1.434314

    Article  ADS  Google Scholar 

  • Bloom M, Burnell EE, MacKay AL, Nichol CP, Valic MI, Weeks G (1978) Fatty acyl chain order in lecithin model membranes determined from proton magnetic resonance. Biochemistry 17(26):5750–5762. doi:10.1021/bi00619a024

    Article  Google Scholar 

  • Boettcher JM, Davis-Harrison RL, Clay MC, Nieuwkoop AJ, Ohkubo YZ, Tajkhorshid E, Morrissey JH, Rienstra CM (2011) Atomic view of calcium-induced clustering of phosphatidylserine in mixed lipid bilayers. Biochemistry 50(12):2264–2273. doi:10.1021/bi1013694

    Article  Google Scholar 

  • Burnell EE, Cullis PR, de Kruijff B (1980) Effects of tumbling and lateral diffusion on phosphatidylcholine model membrane 31P-NMR lineshapes. Biochim Biophys Acta 603(1):63–69

    Article  Google Scholar 

  • Chill JH, Louis JM, Delaglio F, Bax A (2007) Local and global structure of the monomeric subunit of the potassium channel KcsA probed by NMR. Biochim Biophys Acta 1768(12):3260–3270. doi:10.1016/j.bbamem.2007.08.006

    Article  Google Scholar 

  • Das N, Murray DT, Cross TA (2013) Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 8(11):2256–2270. doi:10.1038/nprot.2013.129

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Denisov IG, Baas BJ, Grinkova YV, Sligar SG (2007) Cooperativity in cytochrome P450 3A4: linkages in substrate binding, spin state, uncoupling, and product formation. J Biol Chem 282(10):7066–7076. doi:10.1074/jbc.M609589200

    Article  Google Scholar 

  • Ding Y, Fujimoto LM, Yao Y, Plano GV, Marassi FM (2015) Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. Biochim Biophys Acta 1848(2):712–720. doi:10.1016/j.bbamem.2014.11.021

    Article  Google Scholar 

  • Ding Y, Yao Y, Marassi FM (2013) Membrane protein structure determination in membrana. Acc Chem Res 46(9):2182–2190. doi:10.1021/ar400041a

    Article  Google Scholar 

  • Drechsler A, Separovic F (2003) Solid-state NMR structure determination. IUBMB Life 55(9):515–523. doi:10.1080/15216540310001622740

    Article  Google Scholar 

  • Durr UH, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112(11):6054–6074. doi:10.1021/cr300061w

    Article  Google Scholar 

  • Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21(3):394–401. doi:10.1016/j.str.2013.01.005

    Article  Google Scholar 

  • Ferella L, Luchinat C, Ravera E, Rosato A (2013) SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. J Biomol NMR 57(4):319–326. doi:10.1007/s10858-013-9795-x

    Article  Google Scholar 

  • Fernandez C, Wuthrich K (2003) NMR solution structure determination of membrane proteins reconstituted in detergent micelles. FEBS Lett 555(1):144–150

    Article  Google Scholar 

  • Forbes J, Bowers J, Shan X, Moran L, Oldfield E, Moscarello MA (1988) Some new developments in solid-state nuclear magnetic resonance spectroscopic studies of lipids and biological membranes, including the effects of cholesterol in model and natural systems. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 84(11):3821–3849. doi:10.1039/F19888403821

    Google Scholar 

  • Fox DA, Larsson P, Lo RH, Kroncke BM, Kasson PM, Columbus L (2014) The Structure of the Neisserial outer membrane protein Opa: loop flexibility essential to receptor recognition and bacterial engulfment. J Am Chem Soc. doi:10.1021/ja503093y

    Google Scholar 

  • Franks WT, Linden AH, Kunert B, van Rossum BJ, Oschkinat H (2012) Solid-state magic-angle spinning NMR of membrane proteins and protein-ligand interactions. Eur J Cell Biol 91(4):340–348. doi:10.1016/j.ejcb.2011.09.002

    Article  Google Scholar 

  • Gardiennet C, Schutz AK, Hunkeler A, Kunert B, Terradot L, Bockmann A, Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed Engl 51(31):7855–7858. doi:10.1002/anie.201200779

    Article  Google Scholar 

  • Gluck JM, Wittlich M, Feuerstein S, Hoffmann S, Willbold D, Koenig BW (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131(34):12060–12061. doi:10.1021/ja904897p

    Article  Google Scholar 

  • Gopinath T, Mote KR, Veglia G (2013) Sensitivity and resolution enhancement of oriented solid-state NMR: application to membrane proteins. Prog Nucl Magn Reson Spectrosc 75:50–68. doi:10.1016/j.pnmrs.2013.07.004

    Article  Google Scholar 

  • Haberkorn RA, Herzfeld J, Griffin RG (1978) High resolution phosphorus-31 and carbon-13 nuclear magnetic resonance spectra of unsonicated model membranes. J Am Chem Soc 100(4):1296–1298. doi:10.1021/ja00472a048

    Article  Google Scholar 

  • Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135(5):1919–1925. doi:10.1021/ja310901f

    Article  Google Scholar 

  • Hiller S, Wagner G (2009) The role of solution NMR in the structure determinations of VDAC-1 and other membrane proteins. Curr Opin Struct Biol 19(4):396–401. doi:10.1016/j.sbi.2009.07.013

    Article  Google Scholar 

  • Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24. doi:10.1146/annurev-physchem-032511-143731

    Article  ADS  Google Scholar 

  • Inagaki S, Ghirlando R, Grisshammer R (2013) Biophysical characterization of membrane proteins in nanodiscs. Methods 59(3):287–300. doi:10.1016/j.ymeth.2012.11.006

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMR View: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4(5):603–614. doi:10.1007/BF00404272

    Article  Google Scholar 

  • Kijac AZ, Li Y, Sligar SG, Rienstra CM (2007) Magic-angle spinning solid-state NMR spectroscopy of nanodisc-embedded human CYP3A4. Biochemistry 46(48):13696–13703. doi:10.1021/bi701411g

    Article  Google Scholar 

  • Kijac A, Shih AY, Nieuwkoop AJ, Schulten K, Sligar SG, Rienstra CM (2010) Lipid-protein correlations in nanoscale phospholipid bilayers determined by solid-state nuclear magnetic resonance. Biochemistry 49(43):9190–9198. doi:10.1021/bi1013722

    Article  Google Scholar 

  • Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR Spectroscopy to multi-span integral membrane Proteins. Prog Nucl Magn Reson Spectrosc 55(4):335–360. doi:10.1016/j.pnmrs.2009.07.002

    Article  Google Scholar 

  • Laue TM, Stafford WF 3rd (1999) Modern applications of analytical ultracentrifugation. Annu Rev Biophys Biomol Struct 28:75–100. doi:10.1146/annurev.biophys.28.1.75

    Article  Google Scholar 

  • Levine YK, Birdsall NJ, Lee AG, Metcalfe JC (1972) 13 C nuclear magnetic resonance relaxation measurements of synthetic lecithins and the effect of spin-labeled lipids. Biochemistry 11(8):1416–1421

    Article  Google Scholar 

  • Li Y, Kijac AZ, Sligar SG, Rienstra CM (2006) Structural analysis of nanoscale self-assembled discoidal lipid bilayers by solid-state NMR spectroscopy. Biophys J 91(10):3819–3828. doi:10.1529/biophysj.106.087072

    Article  Google Scholar 

  • Loquet A, Habenstein B, Lange A (2013) Structural investigations of molecular machines by solid-state NMR. Acc Chem Res 46(9):2070–2079. doi:10.1021/ar300320p

    Article  Google Scholar 

  • Macdonald PM, Saleem Q, Lai A, Morales HH (2013) NMR methods for measuring lateral diffusion in membranes. Chem Phys Lipids 166:31–44. doi:10.1016/j.chemphyslip.2012.12.004

    Article  Google Scholar 

  • Maltsev S, Lorigan GA (2011) Membrane proteins structure and dynamics by nuclear magnetic resonance. Compr Physiol 1(4):2175–2187. doi:10.1002/cphy.c110022

    Google Scholar 

  • McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403. doi:10.1146/annurev.biophys.050708.133719

    Article  MathSciNet  Google Scholar 

  • Miller VL, Beer KB, Heusipp G, Young BM, Wachtel MR (2001) Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol 41(5):1053–1062

    Article  Google Scholar 

  • Morris GA, Freeman R (1979) Enhancement of nuclear magnetic resonance signals by polarization transfer. J Am Chem Soc 101(3):760–762. doi:10.1021/ja00497a058

    Article  Google Scholar 

  • Mors K, Roos C, Scholz F, Wachtveitl J, Dotsch V, Bernhard F, Glaubitz C (2013) Modified lipid and protein dynamics in nanodiscs. Biochim Biophys Acta 1828(4):1222–1229. doi:10.1016/j.bbamem.2012.12.011

    Article  Google Scholar 

  • Murray DT, Das N, Cross TA (2013) Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 46(9):2172–2181. doi:10.1021/ar3003442

    Article  Google Scholar 

  • Nagle JF, Tristram-Nagle S (2000) Structure of lipid bilayers. Biochim Biophys Acta 1469(3):159–195. doi:10.1016/S0304-4157(00)00016-2

  • Ni QZ, Daviso E, Can TV, Markhasin E, Jawla SK, Swager TM, Temkin RJ, Herzfeld J, Griffin RG (2013) High frequency dynamic nuclear Polarization. Acc Chem Res 46(9):1933–1941. doi:10.1021/ar300348n

    Article  Google Scholar 

  • Oldfield E, Chapman D (1971) Carbon-13 pulse Fourier transform NMR of lecithins. Biochem Biophys Res Commun 43(5):949–953

    Article  Google Scholar 

  • Oldfield E, Bowers JL, Forbes J (1987) High-resolution proton and carbon-13 NMR of membranes: why sonicate? Biochemistry 26(22):6919–6923

    Article  Google Scholar 

  • Orwick-Rydmark M, Lovett JE, Graziadei A, Lindholm L, Hicks MR, Watts A (2012) Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer Lipodisq particles for functional and biophysical studies. Nano Lett 12(9):4687–4692. doi:10.1021/nl3020395

    Article  ADS  Google Scholar 

  • Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, Katsaras J, Kucerka N (2012) Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering. Biochim Biophys Acta 1898(9):2135–2148. doi:10.1016/j.bbamem.2012.05.007

    Article  Google Scholar 

  • Park SH, Berkamp S, Cook GA, Chan MK, Viadiu H, Opella SJ (2011) Nanodiscs versus macrodiscs for NMR of membrane proteins. Biochemistry 50(42):8983–8985. doi:10.1021/bi201289c

    Article  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis A, Marassi FM, Opella SJ (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491(7426):779–783. doi:10.1038/nature11580

    ADS  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  ADS  Google Scholar 

  • Pines A, Gibby MG, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    Article  ADS  Google Scholar 

  • Plesniak LA, Mahalakshmi R, Rypien C, Yang Y, Racic J, FM Marassi (2011) Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids. Biochim Biophys Acta 1808(1):482–489. doi:10.1016/j.bbamem.2010.09.017

    Article  Google Scholar 

  • Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta 1768(12):3098–3106. doi:10.1016/j.bbamem.2007.09.006

    Article  Google Scholar 

  • Prosser RS, Evanics F, Kitevski JL, Patel S (2007) The measurement of immersion depth and topology of membrane proteins by solution state NMR. Biochim Biophys Acta 1768(12):3044–3051. doi:10.1016/j.bbamem.2007.09.011

    Article  Google Scholar 

  • Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131(49):17777–17779. doi:10.1021/ja907918r

    Article  Google Scholar 

  • Raussens V, Mah MK, Kay CM, Sykes BD, Ryan RO (2000) Structural characterization of a low density lipoprotein receptor-active apolipoprotein E peptide, ApoE3-(126–183). J Biol Chem 275(49):38329–38336. doi:10.1074/jbc.M005732200

    Article  Google Scholar 

  • Ritchie TK, Grinkova YV, Bayburt TH, Denisov IG, Zolnerciks JK, Atkins WM, Sligar SG (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. Methods Enzymol 464:211–231. doi:10.1016/S0076-6879(09)64011-8

    Article  Google Scholar 

  • Sackett K, Nethercott MJ, Zheng Z, Weliky DP (2014) Solid-state NMR spectroscopy of the HIV gp41 membrane fusion protein supports intermolecular antiparallel beta sheet fusion peptide structure in the final six-helix bundle state. J Mol Biol 426(5):1077–1094. doi:10.1016/j.jmb.2013.11.010

    Article  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95(23):13585–13590

    Article  ADS  Google Scholar 

  • Sanders CR, Sonnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44(S1):S24–S40

    Article  Google Scholar 

  • Seelig J (1977) Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 10(3):353–418

    Article  Google Scholar 

  • Seelig J (1978) 31P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim Biophys Acta 515(2):105–140

    Article  Google Scholar 

  • Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou HX, Cross TA (2010) Insight into the mechanism of the influenza a proton channel from a structure in a lipid bilayer. Science 330(6003):509–512. doi:10.1126/science.1191750

    Article  ADS  Google Scholar 

  • Shenkarev ZO, Lyukmanova EN, Solozhenkin OI, Gagnidze IE, Nekrasova OV, Chupin VV, Tagaev AA, Yakimenko ZA, Ovchinnikova TV, Kirpichnikov MP, Arseniev AS (2009) Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides. Biochem Mosc 74(7):756–765

    Article  Google Scholar 

  • Shenkarev ZO, Lyukmanova EN, Paramonov AS, Shingarova LN, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) Lipid-protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132(16):5628–5629. doi:10.1021/ja9097498

    Article  Google Scholar 

  • Shenkarev ZO, Lyukmanova EN, Butenko IO, Petrovskaya LE, Paramonov AS, Shulepko MA, Nekrasova OV, Kirpichnikov MP, Arseniev AS (2013) Lipid-protein nanodiscs promote in vitro folding of transmembrane domains of multi-helical and multimeric membrane proteins. Biochim Biophys Acta 1828(2):776–784. doi:10.1016/j.bbamem.2012.11.005

    Article  Google Scholar 

  • Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  ADS  Google Scholar 

  • Susac L, Horst R, Wuthrich K (2014) Solution-NMR characterization of outer-membrane protein A from E. coli in lipid bilayer nanodiscs and detergent micelles. ChemBioChem 15(7):995–1000. doi:10.1002/cbic.201300729

    Article  Google Scholar 

  • Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional Fourier transform 13C cross-polarization-magic angle spinning. J Magn Reson 47:462–475

    ADS  Google Scholar 

  • Tamm LK, Hong H, Liang B (2004) Folding and assembly of beta-barrel membrane proteins. Biochim Biophys Acta 1666(1–2):250–263

    Article  Google Scholar 

  • Tang M, Comellas G, Rienstra CM (2013) Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc Chem Res 46(9):2080–2088. doi:10.1021/ar4000168

    Article  Google Scholar 

  • Teriete P, Franzin CM, Choi J, Marassi FM (2007) Structure of the Na, K-ATPase regulatory protein FXYD1 in micelles. Biochemistry 46(23):6774–6783. doi:10.1021/bi700391b

    Article  Google Scholar 

  • Tsang TM, Felek S, Krukonis ES (2010) Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun 78(8):3358–3368. doi:10.1128/IAI.00238-10

    Article  Google Scholar 

  • Tsang TM, Annis DS, Kronshage M, Fenno JT, Usselman LD, Mosher DF, Krukonis ES (2012) Ail protein binds ninth type III fibronectin repeat (9FNIII) within central 120-kDa region of fibronectin to facilitate cell binding by Yersinia pestis. J Biol Chem 287(20):16759–16767. doi:10.1074/jbc.M112.358978

    Article  Google Scholar 

  • Tsang TM, Wiese JS, Felek S, Kronshage M, Krukonis ES (2013) Ail proteins of Yersinia pestis and Y. pseudotuberculosis have different cell binding and invasion activities. PLoS ONE 8(12):e83621. doi:10.1371/journal.pone.0083621

    Article  ADS  Google Scholar 

  • Tzitzilonis C, Eichmann C, Maslennikov I, Choe S, Riek R (2013) Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain. PLoS ONE 8(1):e54378. doi:10.1371/journal.pone.0054378

    Article  ADS  Google Scholar 

  • Ullrich SJ, Glaubitz C (2013) Perspectives in enzymology of membrane proteins by solid-state NMR. Acc Chem Res 46(9):2164–2171. doi:10.1021/ar4000289

    Article  Google Scholar 

  • Wang Y, Tjandra N (2013) Structural insights of tBid, the caspase-8-activated Bid, and its BH3 domain. J Biol Chem 288(50):35840–35851. doi:10.1074/jbc.M113.503680

    Article  Google Scholar 

  • Wang S, Munro RA, Shi L, Kawamura I, Okitsu T, Wada A, Kim SY, Jung KH, Brown LS, Ladizhansky V (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10(10):1007–1012. doi:10.1038/nmeth.2635

    Article  Google Scholar 

  • Warschawski DE. http://www.drorlist.com/nmr.html

  • Warschawski DE, Devaux PF (2005) 1H–13C Polarization transfer in membranes: a tool for probing lipid dynamics and the effect of cholesterol. J Magn Reson 177(1):166–171. doi:10.1016/j.jmr.2005.07.011

    Article  ADS  Google Scholar 

  • Weingarth M, Baldus M (2013) Solid-state NMR-based approaches for supramolecular structure elucidation. Acc Chem Res 46(9):2037–2046. doi:10.1021/ar300316e

    Article  Google Scholar 

  • Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK (2011) Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 19(11):1672–1682. doi:10.1016/j.str.2011.08.010

    Article  Google Scholar 

  • Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392. doi:10.1146/annurev-biophys-083012-130326

    Article  Google Scholar 

  • Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31(6):896–908. doi:10.1016/j.molcel.2008.08.028

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bibhuti Das, Chris Grant, Chin Wu and Stan Opella for assistance with solid-state NMR experiments. This research was supported by Grants from the National Institutes of Health (GM100265; P41 EB002031; P30 CA030199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca M. Marassi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Fujimoto, L.M., Yao, Y. et al. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation. J Biomol NMR 61, 275–286 (2015). https://doi.org/10.1007/s10858-014-9893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-014-9893-4

Keywords

Navigation