Skip to main content
Log in

On the use of ultracentrifugal devices for sedimented solute NMR

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We have recently proposed sedimented solute NMR (SedNMR) as a solid-state method to access biomolecules without the need of crystallization or other sample manipulation. The drawback of SedNMR is that samples are intrinsically diluted and this is detrimental for the signal intensity. Ultracentrifugal devices can be used to increase the amount of sample inside the rotor, overcoming the intrinsic sensitivity limitation of the method. We designed two different devices and we here report the directions for using such devices and the relevant equations for determining the parameters for sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Akbey Ü, van Rossum B-J, Oschkinat H (2012) Practical aspects of high-sensitivity multidimensional 13C MAS NMR spectroscopy of perdeuterated proteins. J Magn Reson 217:77–85

    Article  ADS  Google Scholar 

  • Andersson KM, Hovmoller S (2000) The protein content in crystals and packing coefficients in different space groups. Acta Crystallogr D Biol Crystallogr 56:789–790

    Article  Google Scholar 

  • Barbato G, Ikura M, Kay LE, Pastor RW, Bax A (1992) Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy; the central helix is flexible. Biochemistry 31:5269–5278

    Article  Google Scholar 

  • Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay MM, Maas W, Dobson CM and Griffin RG (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133:13967–13974

    Google Scholar 

  • Bermel W, Felli IC, Matzapetakis M, Pierattelli R, Theil EC, Turano P (2007) A method for Cα direct-detection in protonless NMR. J Magn Reson 188:301–310

    Article  ADS  Google Scholar 

  • Bermel W, Felli IC, Kümmerle R, Pierattelli R (2008) 13C direct-detection biomolecular NMR. Concepts Magn Reson 32A:183–200

    Article  Google Scholar 

  • Bermel W, Bertini I, Felli IC, Peruzzini R, Pierattelli R (2010) Exclusively heteronuclear NMR experiments to obtain structural and dynamic information on proteins. Chem Phys Chem 11:689–695

    Article  Google Scholar 

  • Bertini I, Calderone V, Fragai M, Jaiswal R, Luchinat C, Melikian M, Mylonas E, Svergun D (2008) Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP-12. J Am Chem Soc 130:7011–7021

    Article  Google Scholar 

  • Bertini I, Kursula P, Luchinat C, Parigi G, Vahokoski J, Willmans M, Yuan J (2009) Accurate solution structures of proteins from X-ray data and minimal set of NMR data: calmodulin peptide complexes as examples. J Am Chem Soc 131:5134–5144

    Article  Google Scholar 

  • Bertini I, Bhaumik A, De Paepe G, Griffin RG, Lelli M, Lewandowski JR, Luchinat C (2010a) High-resolution solid-state NMR structure of a 17.6 kDa protein. J Am Chem Soc 132:1032–1040

    Article  Google Scholar 

  • Bertini I, Emsley L, Lelli M, Luchinat C, Mao J, Pintacuda G (2010b) Ultra-fast MAS solid-state NMR permits extensive 13C and 1H detection in paramagnetic metalloproteins. J Am Chem Soc 132:5558–5559

    Article  Google Scholar 

  • Bertini I, Gonnelli L, Luchinat C, Mao J, Nesi A (2011a) A new structural model Aβ40 fibrils. J Am Chem Soc 133:16013–16022

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G, Ravera E, Reif B, Turano P (2011b) Solid-state NMR of proteins sedimented by ultracentrifugation. Proc Natl Acad Sci USA 108:10396–10399

    Article  ADS  Google Scholar 

  • Bertini I, Engelke F, Luchinat C, Parigi G, Ravera E, Rosa C, Turano P (2012) NMR properties of sedimented solutes. Phys Chem Chem Phys 14:439–447

    Article  Google Scholar 

  • Bjerring M, Paaske B, Oschkinat H, Akbey Ü, Nielsen NC (2012) Rapid solid-state NMR of deuterated proteins by interleaved cross-polarization from 1H and 2H nuclei. J Magn Reson 214:324–328

    Article  ADS  Google Scholar 

  • Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327

    Article  Google Scholar 

  • Chou JJ, Li S, Klee CB, Bax A (2001) Solution structure of Ca2+ calmodulin reveals flexible hand-like properties of its domains. Nat Struct Biol 8:990–997

    Article  Google Scholar 

  • Debelouchina GT, Platt GW, Bayro MJ, Radford SE, Griffin RG (2010) Magic angle spinning NMR analysis of beta (2)-microglobulin amyloid fibrils in two distinct morphologies. J Am Chem Soc 132:10414–10423

    Article  Google Scholar 

  • Fernández C, Wider G (2003) TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13:570–580

    Article  Google Scholar 

  • Fiaux J, Bertelsen EB, Horwich AL, Wüthrich K (2002) NMR analysis of a 900 KDa GroEL GROES complex. Nature 418:207–211

    Article  ADS  Google Scholar 

  • Fischer MW, Losonczi JA, Weaver JL, Prestegard JH (1999) Domain orientation and dynamics in multidomain proteins from residual dipolar couplings. Biochemistry 38:9013–9022

    Article  Google Scholar 

  • Gardiennet C, Schütz AK, Hunkeler A, Kunert B, Terradot L, Böckmann A and Meier BH (2012) A sedimented sample of a 59 kDa dodecameric helicase yields high-resolution solid-state NMR spectra. Angew Chem Int Ed 51:7855–7858

    Google Scholar 

  • Guo C, Zhang D, Tugarinov V (2008) An NMR experiment for simultaneous TROSY-based detection of amide and methyl groups in large proteins. J Am Chem Soc 130:10872–10873

    Article  Google Scholar 

  • Hu B, Lafon OTJ, Chen Q, Amoureux J-P (2011) Broad-band homo-nuclear correlations assisted by 1H irradiation for biomolecules in very high magnetic field at fast and ultra-fast MAS frequencies. J Magn Reson 212:320–329

    Article  ADS  Google Scholar 

  • Huber M, Böckmann A, Hiller S, Meier BH (2012) 4D solid-state NMR for protein structure determination. Phys Chem Chem Phys 14:5239–5246

    Article  Google Scholar 

  • Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Emsley L, Lesage A, Hermann T, Pintacuda G (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid state MAS NMR spectroscopy. Angew Chem Int Ed 50:11697–11701

    Article  Google Scholar 

  • Lewandowski JR, Sein J, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2010) Measurement of site-specific 13C spin-lattice relaxation in a crystalline protein. J Am Chem Soc 132:8252–8254

    Article  Google Scholar 

  • Lewandowski JR, Dumez JN, Akbey Ü, Franks WT, Emsley L, Oschkinat H (2011a) Enhanced resolution and coherence lifetimes in the solid-state NMR Spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211

    Article  Google Scholar 

  • Lewandowski JR, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2011b) Site-specific measurement of slow motions in proteins. J Am Chem Soc 133:16762–16765

    Article  Google Scholar 

  • Lewandowski JR, Van der Wel PCA, Rigney M, Grigorieff N, Griffin RG (2011c) Structural complexity of a composite amyloid fibril. J Am Chem Soc 133:14686–14698

    Article  Google Scholar 

  • Linden AH, Franks WT, Akbey Ü, Lange S, van Rossum B-J, Oschkinat H (2011) Cryogenic temperature effects and resolution upon slow cooling of protein preparations in solid state NMR. J Biomol NMR 51:283–292

    Article  Google Scholar 

  • Loening NM, Bjerring M, Nielsen NC, Oschkinat H (2012) A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy. J Magn Reson 214:81–90

    Article  ADS  Google Scholar 

  • Loquet A, Giller K, Becker S, Lange A (2010) Supramolecular interactions probed by (13)C–(13)C solid-state NMR spectroscopy. J Am Chem Soc 132:15164–15166

    Article  Google Scholar 

  • Luchinat C, Parigi G, Ravera E, Rinaldelli M (2012) Solid state NMR crystallography through paramagnetic restraints. J Am Chem Soc 134:5006–5009

    Article  Google Scholar 

  • Lundh S (1980) Concentrated protein solutions in the analytical ultracentrifuge. J Polym Sci Polym Phys Edn 18:1963–1978

    Article  ADS  Google Scholar 

  • Lundh S (1985) Ultracentrifugation of concentrated biopolymer solutions and effect of ascorbate. Arch Biochem Biophys 241:265–274

    Article  Google Scholar 

  • Martin RW, Zilm KW (2003) Preparation of protein nanocrystals and their characterization by solid state NMR. J Magn Reson 165:162–174

    Article  ADS  Google Scholar 

  • Matzapetakis M, Turano P, Theil EC, Bertini I (2007) 13C–13C NOESY spectra of a 480 kDa protein: solution NMR of ferritin. J Biomol NMR 38:237–242

    Article  Google Scholar 

  • Nielsen AB, Székely K, Gath J, Ernst M, Nielsen NC and Meier BH (2012) Simultaneous acquisition of PAR and PAIN spectra. J Biomol NMR 52:283–288

    Google Scholar 

  • Parthasarathy S, Long F, Miller Y, Xiao Y, McElheny D, Thurber K, Ma B, Nussinov R, Ishii Y (2011) Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer’s β by solid-state NMR spectroscopy. J Am Chem Soc 133:3390–3400

    Article  Google Scholar 

  • Pauli J, van Rossum B, Forster H, de Groot HJ, Oschkinat H (2000) Sample optimization and identification of signal patterns of amino acid side chains in 2D RFDR spectra of the alpha-spectrin SH3 domain. J Magn Reson 143:411–416

    Article  ADS  Google Scholar 

  • Petkova AT, Ishii Y, Balbach JJ, Antzutkin ON, Leapman RD, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s beta-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci USA 99:16742–16747

    Article  ADS  Google Scholar 

  • Polenova T (2011) Spinning into focus. Nat Chem 3:759–760

    Google Scholar 

  • Poon DKY, Withers SG, McIntosh LP (2007) Direct demonstration of the flexibility of the glycosylated proline-threonine linker in the Cellulomonas fimi xylanase Cex through NMR spectroscopic analysis. J Biol Chem 282:2091–2100

    Article  Google Scholar 

  • Riek R, Wider G, Pervushin K, Wüthrich K (1999) Polarization transfer by cross-correlated relaxation in solution NMR with very large molecules. Proc Natl Acad Sci USA 96:4918–4923

    Article  ADS  Google Scholar 

  • Skrynnikov NR, Goto NK, Yang D, Choy W-Y, Tolman JR, Mueller GA, Kay LE (2000) Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with β-cyclodextrin. J Mol Biol 295:1265–1273

    Article  Google Scholar 

  • Sun SJ, Siglin A, Williams JC, Polenova T (2009) Solid-state and solution nmr studies of the CAP-Gly domain of mammalian dynactin and its interaction with microtubules. J Am Chem Soc 131:10113–10126

    Article  Google Scholar 

  • Tugarinov V, Choy WY, Orekhov VY, Kay LE (2005a) Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci USA 102:622–627

    Article  ADS  Google Scholar 

  • Tugarinov V, Kay LE, Ibraghimov I, Orekhov VY (2005b) High-resolution four-dimensional 1H–13C NOE spectroscopy using methyl-TROSY, sparse data acquisition, and multidimensional decomposition. J Am Chem Soc 127:2767–2775

    Article  Google Scholar 

  • Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    Article  Google Scholar 

  • Tycko R, Ishii Y (2003) Constraints on supramolecular structure in amyloid fibrils from two-dimensional solid-state NMR spectroscopy with uniform isotopic labeling. J Am Chem Soc 125:6606–6607

    Article  Google Scholar 

  • Webber AL, Pell AJ, Barbet-Massin E, Knight MJ, Bertini I, Felli IC, Pierattelli R, Emsley L, Lesage A and Pintacuda G (2012) Combination of DQ and ZQ coherences for sensitive through-bond NMR correlation experiments in biosolids under ultra-fast MAS. Chem Phys Chem 13:2405–2411

    Google Scholar 

  • Wider G (2005) NMR techniques used with very large biological macromolecules in solution. Methods Enzymol 394:382–398

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the EC contracts East-NMR no. 228461 and Bio-NMR no. 261863, INSTRUCT (European FP7 e-Infrastructure grant, contract no. 211252, http://www.instruct-fp7.eu/), and Ente Cassa Risparmio Firenze. Fruitful discussion with Anja Böckmann (IBCP, Lyon) is acknowledged. We are grateful to Alberto Catelani, Massimo Falorsi, Massimo Merciai and Nicola Pasqualetti (Department of Physics and Astronomy, University of Florence, Italy) for the production of device 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Luchinat.

Additional information

Prof. Dr. Ivano Bertini passed away on July 7th, 2012.

CAD drawings for the production of device 2 are available upon request. If appropriate the authors provide service for filling rotors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertini, I., Engelke, F., Gonnelli, L. et al. On the use of ultracentrifugal devices for sedimented solute NMR. J Biomol NMR 54, 123–127 (2012). https://doi.org/10.1007/s10858-012-9657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9657-y

Keywords

Navigation