Skip to main content
Log in

Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The ATP binding cassette transporter TAPL translocates cytosolic peptides into the lumen of lysosomes driven by the hydrolysis of ATP. Functionally, this transporter can be divided into coreTAPL, comprising the transport function, and an additional N-terminal transmembrane domain called TMD0, which is essential for lysosomal targeting and mediates the interaction with the lysosomal associated membrane proteins LAMP-1 and LAMP-2. To elucidate the structure of this unique domain, we developed protocols for the production of high quantities of cell-free expressed TMD0 by screening different N-terminal expression tags. Independently of the amino acid sequence, high expression was detected for AU-rich sequences in the first seven codons, decreasing the free energy of RNA secondary structure formation at translation initiation. Furthermore, avoiding NGG codons in the region of translation initiation demonstrated a positive effect on expression. For NMR studies, conditions were optimized for high solubilization efficiency, long-term stability, and high quality spectra. A most critical step was the careful exchange of the detergent used for solubilization by the detergent dihexanoylphosphatidylcholine. Several constructs of different size were tested in order to stabilize the fold of TMD0 as well as to reduce the conformation exchange. NMR spectra with sufficient resolution and homogeneity were finally obtained with a TMD0 derivative only modified by a C-terminal His10-tag and containing a codon optimized AT-rich sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

β-OG:

n-Octyl-β-D-glucopyranoside

Brij58:

Polyethylene glycol hexadecyl ether

c7-DHPC:

1,2-Diheptanoyl-sn-glycero-3-phosphocholine

DDM:

n-Dodecyl-β-D-maltopyranoside

DHPC:

1,2-Dihexanoyl-sn-glycero-3-phosphocholine

DPC:

Dodecylphosphocholine

LDAO:

n-Dodecyl-N,N-Dimethylamine-N-Oxide

LMPC:

1-Myristoyl-2-hydroxy-sn-glycero-3-phosphocholine

LMPG:

1-Myristoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)]

LPPG:

1-Palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)]

SDS:

Sodium dodecyl sulfate

TROSY:

Transverse relaxation optimized spectroscopy

TX100:

Polyethylenglycol-mono-[p-(1,1,3,3-tetramethylbutyl)-phenyl]-ether

References

  • Ahn JH, Hwang MY, Lee KH, Choi CY, Kim DM (2007) Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts. Nucleic Acids Res 35(4):e21. doi:10.1093/nar/gkl917

    Article  Google Scholar 

  • Arnold T, Linke D (2008) The use of detergents to purify membrane proteins. Curr Protoc Protein Sci Chapter 4: Unit 4.8.1-4.8.30. doi:10.1002/0471140864.ps0408s53

  • Baker KA, Tzitzilonis C, Kwiatkowski W, Choe S, Riek R (2007) Conformational dynamics of the KcsA potassium channel governs gating properties. Nat Struct Mol Biol 14(11):1089–1095. doi:10.1038/nsmb1311

    Article  Google Scholar 

  • Bandler PE, Westlake CJ, Grant CE, Cole SP, Deeley RG (2008) Identification of regions required for apical membrane localization of human multidrug resistance protein 2. Mol Pharmacol 74(1):9–19. doi:10.1124/mol.108.045674

    Article  Google Scholar 

  • Biemans-Oldehinkel E, Doeven MK, Poolman B (2006) ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580(4):1023–1035. doi:10.1016/j.febslet.2005.11.079

    Article  Google Scholar 

  • Borst P, Elferink RO (2002) Mammalian ABC transporters in health and disease. Annu Rev Biochem 71:537–592. doi:10.1146/annurev.biochem.71.102301.093055

    Article  Google Scholar 

  • Chan KW, Zhang H, Logothetis DE (2003) N-terminal transmembrane domain of the SUR controls trafficking and gating of Kir6 channel subunits. EMBO J 22(15):3833–3843. doi:10.1093/emboj/cdg376

    Article  Google Scholar 

  • Demirel O, Waibler Z, Kalinke U, Grunebach F, Appel S, Brossart P, Hasilik A, Tampé R, Abele R (2007) Identification of a lysosomal peptide transport system induced during dendritic cell development. J Biol Chem 282(52):37836–37843. doi:10.1074/jbc.M708139200

    Article  Google Scholar 

  • Demirel O, Bangert I, Tampé R, Abele R (2010) Tuning the cellular trafficking of the lysosomal peptide transporter TAPL by its N-terminal domain. Traffic 11(3):383–393. doi:10.1111/j.1600-0854.2009.01021.x

    Article  Google Scholar 

  • Demirel O, Jan I, Wolters D, Blanz J, Saftig P, Tampé R, Abele R (2012) The lysosomal polypeptide transporter TAPL is stabilized by interaction with LAMP-1 and LAMP-2. J Cell Sci 125(Pt 18):4230–4240. doi:10.1242/jcs.087346

    Article  Google Scholar 

  • Deng X, Eickholt J, Cheng J (2012) A comprehensive overview of computational protein disorder prediction methods. Mol BioSyst 8(1):114–121. doi:10.1039/c1mb05207a

    Article  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49(1):9–15. doi:10.1007/s10858-010-9461-5

    Article  Google Scholar 

  • Galka JJ, Baturin SJ, Manley DM, Kehler AJ, O’Neil JD (2008) Stability of the glycerol facilitator in detergent solutions. Biochemistry 47(11):3513–3524. doi:10.1021/bi7021409

    Article  Google Scholar 

  • Gautier A, Kirkpatrick JP, Nietlispach D (2008) Solution-state NMR spectroscopy of a seven-helix transmembrane protein receptor: backbone assignment, secondary structure, and dynamics. Angew Chem Int Ed Engl 47(38):7297–7300. doi:10.1002/anie.200802783

    Article  Google Scholar 

  • Goltermann L, Borch Jensen M, Bentin T (2011) Tuning protein expression using synonymous codon libraries targeted to the 5′ mRNA coding region. Protein Eng Des Sel 24(1–2):123–129. doi:10.1093/protein/gzq086

    Article  Google Scholar 

  • Gonzalez de Valdivia EI, Isaksson LA (2004) A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli. Nucleic Acids Res 32(17):5198–5205. doi:10.1093/nar/gkh857

    Article  Google Scholar 

  • Haberstock S, Roos C, Hoevels Y, Dötsch V, Schnapp G, Pautsch A, Bernhard F (2012) A systematic approach to increase the efficiency of membrane protein production in cell-free expression systems. Protein Expr Purif 82(2):308–316. doi:10.1016/j.pep.2012.01.018

    Article  Google Scholar 

  • Higgins CF (1992) ABC transporters: from microorganisms to man. Annu Rev Cell Biol 8:67–113. doi:10.1146/annurev.cb.08.110192.000435

    Article  Google Scholar 

  • Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Prive GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci USA 99(21):13560–13565. doi:10.1073/pnas.212344499

    Article  ADS  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440(7080):52–57. doi:10.1038/nature04525

    Article  ADS  Google Scholar 

  • Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR Spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55(4):335–360. doi:10.1016/j.pnmrs.2009.07.002

    Article  Google Scholar 

  • Klammt C, Löhr F, Schäfer B, Haase W, Dötsch V, Ruterjans H, Glaubitz C, Bernhard F (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271(3):568–580

    Article  Google Scholar 

  • Klammt C, Schwarz D, Dötsch V, Bernhard F (2007a) Cell-free production of integral membrane proteins on a preparative scale. Methods Mol Biol 375:57–78. doi:10.1007/978-1-59745-388-2_3

    Google Scholar 

  • Klammt C, Schwarz D, Eifler N, Engel A, Piehler J, Haase W, Hahn S, Dötsch V, Bernhard F (2007b) Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 158(3):482–493. doi:10.1016/j.jsb.2007.01.006

    Article  Google Scholar 

  • Klammt C, Maslennikov I, Bayrhuber M, Eichmann C, Vajpai N, Chiu EJ, Blain KY, Esquivies L, Kwon JH, Balana B, Pieper U, Sali A, Slesinger PA, Kwiatkowski W, Riek R, Choe S (2012) Facile backbone structure determination of human membrane proteins by NMR spectroscopy. Nat Methods 9(8):834–839. doi:10.1038/nmeth.2033

    Article  Google Scholar 

  • Knubovets T, Osterhout JJ, Connolly PJ, Klibanov AM (1999) Structure, thermostability, and conformational flexibility of hen egg-white lysozyme dissolved in glycerol. Proc Natl Acad Sci USA 96(4):1262–1267

    Article  ADS  Google Scholar 

  • Koch J, Guntrum R, Heintke S, Kyritsis C, Tampé R (2004) Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J Biol Chem 279(11):10142–10147. doi:10.1074/jbc.M312816200

    Article  Google Scholar 

  • Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37. doi:10.1016/j.gene.2005.06.037

    Article  Google Scholar 

  • Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324(5924):255–258. doi:10.1126/science.1170160

    Article  ADS  Google Scholar 

  • Lee D, Hilty C, Wider G, Wuthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178(1):72–76. doi:10.1016/j.jmr.2005.08.014

    Article  ADS  Google Scholar 

  • Leveson-Gower DB, Michnick SW, Ling V (2004) Detection of TAP family dimerizations by an in vivo assay in mammalian cells. Biochemistry 43(44):14257–14264. doi:10.1021/bi0491245

    Article  Google Scholar 

  • Löhr F, Reckel S, Karbyshev M, Connolly PJ, Abdul-Manan N, Bernhard F, Moore JM, Dötsch V (2012) Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment. J Biomol NMR 52(3):197–210. doi:10.1007/s10858-012-9601-1

    Article  Google Scholar 

  • Lundstrom K, Wagner R, Reinhart C, Desmyter A, Cherouati N, Magnin T, Zeder-Lutz G, Courtot M, Prual C, Andre N, Hassaine G, Michel H, Cambillau C, Pattus F (2006) Structural genomics on membrane proteins: comparison of more than 100 GPCRs in 3 expression systems. J Struct Funct Genomics 7(2):77–91. doi:10.1007/s10969-006-9011-2

    Article  Google Scholar 

  • Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33 (Web Server issue):W577–W581. doi:10.1093/nar/gki591

  • Nietlispach D, Gautier A (2011) Solution NMR studies of polytopic alpha-helical membrane proteins. Curr Opin Struct Biol 21(4):497–508. doi:10.1016/j.sbi.2011.06.009

    Article  Google Scholar 

  • Page RC, Moore JD, Nguyen HB, Sharma M, Chase R, Gao FP, Mobley CK, Sanders CR, Ma L, Sonnichsen FD, Lee S, Howell SC, Opella SJ, Cross TA (2006) Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J Struct Funct Genomics 7(1):51–64. doi:10.1007/s10969-006-9009-9

    Article  Google Scholar 

  • Reckel S, Sobhanifar S, Durst F, Lohr F, Shirokov VA, Dotsch V, Bernhard F (2010) Strategies for the cell-free expression of membrane proteins. Methods Mol Biol 607:187–212. doi:10.1007/978-1-60327-331-2_16

    Article  Google Scholar 

  • Sayari A, Mosbah H, Verger R, Gargouri Y (2007) The N-terminal His-tag affects the enantioselectivity of staphylococcal lipases: a monolayer study. J Colloid Interface Sci 313(1):261–267. doi:10.1016/j.jcis.2007.04.053

    Article  Google Scholar 

  • Schneider B, Junge F, Shirokov VA, Durst F, Schwarz D, Dötsch V, Bernhard F (2010) Membrane protein expression in cell-free systems. Methods Mol Biol 601:165–186. doi:10.1007/978-1-60761-344-2_11

    Article  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178):591–595. doi:10.1038/nature06531

    Article  ADS  Google Scholar 

  • Schwarz D, Junge F, Durst F, Frolich N, Schneider B, Reckel S, Sobhanifar S, Dötsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2(11):2945–2957. doi:10.1038/nprot.2007.426

    Article  Google Scholar 

  • Sharma S, Zheng H, Huang YJ, Ertekin A, Hamuro Y, Rossi P, Tejero R, Acton TB, Xiao R, Jiang M, Zhao L, Ma LC, Swapna GV, Aramini JM, Montelione GT (2009) Construct optimization for protein NMR structure analysis using amide hydrogen/deuterium exchange mass spectrometry. Proteins 76(4):882–894. doi:10.1002/prot.22394

    Article  Google Scholar 

  • Tian C, Karra MD, Ellis CD, Jacob J, Oxenoid K, Sonnichsen F, Sanders CR (2005) Membrane protein preparation for TROSY NMR screening. Methods Enzymol 394:321–334. doi:10.1016/S0076-6879(05)94012-3

    Article  Google Scholar 

  • Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian C, Sonnichsen FD, Sanders CR (2009) Solution nuclear magnetic resonance structure of membrane-integral diacylglycerol kinase. Science 324(5935):1726–1729. doi:10.1126/science.1171716

    Article  ADS  Google Scholar 

  • Varshavsky A (1997) The N-end rule pathway of protein degradation. Genes Cells 2(1):13–28

    Article  Google Scholar 

  • Wagner S, Baarst L, Ytterberg AJ, Klussmeier A, Wagner CS, Nord O, Nygren PA, van Wijk KJ, de Gier JW (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6(9):1527–1550. doi:10.1074/mcp.M600431-MCP200

    Article  Google Scholar 

  • Wang DN, Safferling M, Lemieux MJ, Griffith H, Chen Y, Li XD (2003) Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. Biochim Biophys Acta 1610(1):23–36

    Article  Google Scholar 

  • Wang J, Pielak RM, McClintock MA, Chou JJ (2009) Solution structure and functional analysis of the influenza B proton channel. Nat Struct Mol Biol 16(12):1267–1271. doi:10.1038/nsmb.1707

    Article  Google Scholar 

  • Wolters JC, Abele R, Tampé R (2005) Selective and ATP-dependent translocation of peptides by the homodimeric ATP binding cassette transporter TAP-like (ABCB9). J Biol Chem 280(25):23631–23636. doi:10.1074/jbc.M503231200

    Article  Google Scholar 

  • Yamaguchi Y, Kasano M, Terada T, Sato R, Maeda M (1999) An ABC transporter homologous to TAP proteins. FEBS Lett 457(2):231–236

    Article  Google Scholar 

  • Zanzoni S, D’Onofrio M, Molinari H, Assfalg M (2012) Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy. Biochem Biophys Res Commun 427(3):677–681. doi:10.1016/j.bbrc.2012.09.121

    Article  Google Scholar 

  • Zhang F, Zhang W, Liu L, Fisher CL, Hui D, Childs S, Dorovini-Zis K, Ling V (2000) Characterization of ABCB9, an ATP binding cassette protein associated with lysosomes. J Biol Chem 275(30):23287–23294. doi:10.1074/jbc.M001819200

    Article  Google Scholar 

  • Zhao C, Haase W, Tampé R, Abele R (2008) Peptide specificity and lipid activation of the lysosomal transport complex ABCB9 (TAPL). J Biol Chem 283(25):17083–17091. doi:10.1074/jbc.M801794200

    Article  Google Scholar 

  • Zhou Y, Cierpicki T, Jimenez RH, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31(6):896–908. doi:10.1016/j.molcel.2008.08.028

    Article  Google Scholar 

Download references

Acknowledgments

We thank Christine Le Gal for preparing the manuscript. This work is supported by German Research Foundation (SFB 807—F.T., C.R., F.B., V.D., R.A.), NIH (U54 GM094608), the Center for Biomolecular Magnetic Resonance (BMRZ) and the Cluster of Excellence Frankfurt (Macromolecular Complexes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Abele.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 605 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tumulka, F., Roos, C., Löhr, F. et al. Conformational stabilization of the membrane embedded targeting domain of the lysosomal peptide transporter TAPL for solution NMR. J Biomol NMR 57, 141–154 (2013). https://doi.org/10.1007/s10858-013-9774-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9774-2

Keywords

Navigation