Skip to main content
Log in

Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Obtaining NMR assignments for slowly tumbling molecules such as detergent-solubilized membrane proteins is often compromised by low sensitivity as well as spectral overlap. Both problems can be addressed by amino-acid specific isotope labeling in conjunction with 15N–1H correlation experiments. In this work an extended combinatorial selective in vitro labeling scheme is proposed that seeks to reduce the number of samples required for assignment. Including three different species of amino acids in each sample, 15N, 1-13C, and fully 13C/15N labeled, permits identification of more amino acid types and sequential pairs than would be possible with previously published combinatorial methods. The new protocol involves recording of up to five 2D triple-resonance experiments to distinguish the various isotopomeric dipeptide species. The pattern of backbone NH cross peaks in this series of spectra adds a new dimension to the combinatorial grid, which otherwise mostly relies on comparison of [15N, 1H]–HSQC and possibly 2D HN(CO) spectra of samples with different labeled amino acid compositions. Application to two α-helical membrane proteins shows that using no more than three samples information can be accumulated such that backbone assignments can be completed solely based on 3D HNCA/HN(CO)CA experiments. Alternatively, in the case of severe signal overlap in certain regions of the standard suite of triple-resonance spectra acquired on uniformly labeled protein, or missing signals due to a lack of efficiency of 3D experiments, the remaining gaps can be filled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the alpha-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1:99–104

    Article  Google Scholar 

  • Bayrhuber M, Riek R (2011) Very simple combination of TROSY, CRINEPT and multiple quantum coherence for signal enhancement in an HN(CO)CA experiment for large proteins. J Magn Reson 209:310–314

    Article  ADS  Google Scholar 

  • Bodenhausen G, Ruben DJ (1980) Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy. Chem Phys Lett 69:185–189

    Article  ADS  Google Scholar 

  • Butterwick JA, MacKinnon R (2010) Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP. J Mol Biol 403:591–606

    Article  Google Scholar 

  • Clubb RT, Thanabal V, Wagner G (1992) A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N–13C-labelled proteins. J Magn Reson 97:213–217

    Google Scholar 

  • Czisch M, Boelens R (1998) Sensitivity enhancement in the TROSY experiment. J Magn Reson 134:158–160

    Article  ADS  Google Scholar 

  • Delaglio F, Torchia DA, Bax A (1991) Measurement of 15N–13C J couplings in staphylococcal nuclease. J Biomol NMR 1:439–446

    Article  Google Scholar 

  • Farjon J, Boisbouvier J, Schanda P, Pardi A, Simorre JP, Brutscher B (2009) Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution. J Am Chem Soc 131:8571–8577

    Article  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15

    Article  Google Scholar 

  • Feuerstein S, Plevin MJ, Willbold D, Brutscher B (2011) iHADAMAC: a complementary tool for sequential resonance assignment of globular and highly disordered proteins. J Magn Reson. doi:10.1016/j.jmr2011.10.019

    MATH  Google Scholar 

  • Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17:768–774

    Article  Google Scholar 

  • Golovanov AP, Blankley RT, Avis JM, Bermel W (2007) Isotopically discriminated NMR spectroscopy: a tool for investigating complex protein interactions in vitro. J Am Chem Soc 129:6528–6535

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P (2010) Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm. J Biomol NMR 49:75–84

    Article  Google Scholar 

  • Ikura M, Kay LE, Bax A (1990a) A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667

    Article  Google Scholar 

  • Ikura M, Krinks M, Torchia DA, Bax A (1990b) An efficient NMR approach for obtaining sequence-specific resonance assignments of larger proteins based on multiple isotopic labeling. FEBS Lett 266:155–158

    Article  Google Scholar 

  • Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent K + channel. Nature 423:42–48

    Article  ADS  Google Scholar 

  • Kainosho M, Tsuji T (1982) Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling technique. A new strategy for structural studies of proteins in solution. Biochemistry 21:6273–6279

    Article  Google Scholar 

  • Kay L, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360

    Article  Google Scholar 

  • Klammt C, Schwarz D, Dötsch V, Bernhard F (2007) Cell-free production of integral membrane proteins on a preparative scale. Methods Mol Biol 375:57–78

    Article  Google Scholar 

  • Lee D, Hilty C, Wider G, Wüthrich K (2006) Effective rotational correlation times of proteins from NMR relaxation interference. J Magn Reson 178:72–76

    Article  ADS  Google Scholar 

  • Lescop E, Rasia R, Brutscher B (2008) Hadamard amino-acid-type edited NMR experiment for fast protein resonance assignment. J Am Chem Soc 130:5014–5015

    Article  Google Scholar 

  • Logan TM, Olejniczak ET, Xu RX, Fesik SW (1992) Side chain and backbone assignments in isotopically labeled proteins from two heteronuclear triple resonance experiments. FEBS Lett 314:413–418

    Article  Google Scholar 

  • Macura S (2009) Accelerated multidimensional NMR data acquisition by varying the pulse sequence repetition time. J Am Chem Soc 131:9606–9607

    Article  Google Scholar 

  • Maslennikov I, Klammt C, Hwang E, Kefala G, Okamura M, Esquivies L, Mors K, Glaubitz C, Kwiatkowski W, Jeon YH, Choe S (2010) Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci USA 107:10902–10907

    Article  ADS  Google Scholar 

  • Masterson LR, Tonelli M, Markley JL, Veglia G (2008) Simultaneous detection and deconvolution of congested NMR spectra containing three isotopically labeled species. J Am Chem Soc 130:7818–7819

    Article  Google Scholar 

  • Morita EH, Shimizu M, Ogasawara T, Endo Y, Tanaka R, Kohno T (2004) A novel way of amino acid-specific assignment in 1H–15N HSQC spectra with a wheat germ cell-free protein synthesis system. J Biomol NMR 30:37–45

    Article  Google Scholar 

  • Nietlispach D, Gautier A (2011) Solution NMR studies of polytopic alpha-helical membrane proteins. Curr Opin Struct Biol 21:497–508

    Article  Google Scholar 

  • Nietlispach D, Ito Y, Laue ED (2002) A novel approach for the sequential backbone assignment of larger proteins: selective intra-HNCA and DQ-HNCA. J Am Chem Soc 124:11199–11207

    Article  Google Scholar 

  • Ozawa K, Headlam MJ, Schaeffer PM, Henderson BR, Dixon NE, Otting G (2004) Optimization of an Escherichia coli system for cell-free synthesis of selectively N-labelled proteins for rapid analysis by NMR spectroscopy. Eur J Biochem 271:4084–4093

    Article  Google Scholar 

  • Ozawa K, Wu PS, Dixon NE, Otting G (2006) 15N-Labelled proteins by cell-free protein synthesis. Strategies for high-throughput NMR studies of proteins and protein-ligand complexes. FEBS J 273:4154–4159

    Article  Google Scholar 

  • Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ (2004) A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc 126:5020–5021

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Pervushin KV, Wider G, Wuthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in [15N,1H]-TROSY. J Biomol NMR 12:345–348

    Article  Google Scholar 

  • Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777–17779

    Article  Google Scholar 

  • Raschle T, Hiller S, Etzkorn M, Wagner G (2010) Nonmicellar systems for solution NMR spectroscopy of membrane proteins. Curr Opin Struct Biol 20:471–479

    Article  Google Scholar 

  • Reckel S, Sobhanifar S, Schneider B, Junge F, Schwarz D, Durst F, Löhr F, Güntert P, Bernhard F, Dötsch V (2008) Transmembrane segment enhanced labeling as a tool for the backbone assignment of alpha-helical membrane proteins. Proc Natl Acad Sci USA 105:8262–8267

    Article  ADS  Google Scholar 

  • Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 50:11942–11946

    Article  Google Scholar 

  • Salzmann M, Pervushin K, Wider G, Senn H, Wüthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590

    Article  ADS  Google Scholar 

  • Sanders CR, Sönnichsen F (2006) Solution NMR of membrane proteins: practice and challenges. Magn Reson Chem 44:S24–S40

    Article  Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  Google Scholar 

  • Schmidt JM, Hua Y, Löhr F (2010) Correlation of 2 J couplings with protein secondary structure. Proteins 78:1544–1562

    Google Scholar 

  • Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective 1H–15N correlations. J Magn Reson 141:34–43

    Article  ADS  Google Scholar 

  • Schwarz D, Junge F, Durst F, Frölich N, Schneider B, Reckel S, Sobhanifar S, Dötsch V, Bernhard F (2007) Preparative scale expression of membrane proteins in Escherichia coli-based continuous exchange cell-free systems. Nat Protoc 2:2945–2957

    Article  Google Scholar 

  • Shenkarev ZO, Paramonov AS, Lyukmanova EN, Shingarova LN, Yakimov SA, Dubinnyi MA, Chupin VV, Kirpichnikov MP, Blommers MJ, Arseniev AS (2010) NMR structural and dynamical investigation of the isolated voltage-sensing domain of the potassium channel KvAP: implications for voltage gating. J Am Chem Soc 132:5630–5637

    Article  Google Scholar 

  • Shi J, Pelton JG, Cho HS, Wemmer DE (2004) Protein signal assignments using specific labeling and cell-free synthesis. J Biomol NMR 28:235–247

    Article  MATH  Google Scholar 

  • Shortle D (1994) Assignment of amino acid type in 1H–15N correlation spectra by labeling with 14N-amino acids. J Magn Reson B 105:88–90

    Article  Google Scholar 

  • Sobhanifar S, Reckel S, Junge F, Schwarz D, Kai L, Karbyshev M, Löhr F, Bernhard F, Dötsch V (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43

    Article  Google Scholar 

  • Staunton D, Schlinkert R, Zanetti G, Colebrook SA, Campbell ID (2006) Cell-free expression and selective isotope labelling in protein NMR. Magn Reson Chem 44:S2–S9

    Article  Google Scholar 

  • Szyperski T, Braun D, Fernandez C, Bartels C, Wüthrich K (1995) A novel reduced-dimensionality triple-resonance experiment for efficient polypeptide backbone assignment, 3D CO HN N CA. J Magn Reson B 108:197–203

    Article  Google Scholar 

  • Takeuchi K, Ng E, Malia TJ, Wagner G (2007) 1–13C amino acid selective labeling in a 2H15N background for NMR studies of large proteins. J Biomol NMR 38:89–98

    Article  Google Scholar 

  • Tamm LK, Liang B (2006) NMR of membrane proteins in solution. Prog Nucl Magn Reson Spectrosc 48:201–210

    Article  Google Scholar 

  • Tonelli M, Masterson LR, Hallenga K, Veglia G, Markley JL (2007) Carbonyl carbon label selective (CCLS) 1H–15N HSQC experiment for improved detection of backbone 13C–15N cross peaks in larger proteins. J Biomol NMR 39:177–185

    Article  Google Scholar 

  • Tonelli M, Masterson LR, Cornilescu G, Markley JL, Veglia G (2009) One-sample approach to determine the relative orientations of proteins in ternary and binary complexes from residual dipolar coupling measurements. J Am Chem Soc 131:14138–14139

    Article  Google Scholar 

  • Tonelli M, Singarapu KK, Makino S, Sahu SC, Matsubara Y, Endo Y, Kainosho M, Markley JL (2011) Hydrogen exchange during cell-free incorporation of deuterated amino acids and an approach to its inhibition. J Biomol NMR 51:467–476

    Article  Google Scholar 

  • Trbovic N, Klammt C, Koglin A, Löhr F, Bernhard F, Dötsch V (2005) Efficient strategy for the rapid backbone assignment of membrane proteins. J Am Chem Soc 127:13504–13505

    Article  Google Scholar 

  • Weigelt J (1998) Single Scan, Sensitivity- and Gradient-Enhanced TROSY for Multidimensional NMR Experiments. J Am Chem Soc 120:10778–10779

    Article  Google Scholar 

  • Weigelt J, van Dongen M, Uppenberg J, Schultz J, Wikström M (2002) Site-selective screening by NMR spectroscopy with labeled amino acid pairs. J Am Chem Soc 124:2446–2447

    Article  Google Scholar 

  • Wirmer J, Schwalbe H (2002) Angular dependence of 1J(Ni, Cαi) and 2J(Ni, Cα(i − 1)) coupling constants measured in J-modulated HSQCs. J Biomol NMR 23:47–55

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  Google Scholar 

  • Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Reson B 101:201–205

    Article  Google Scholar 

  • Wu PS, Ozawa K, Jergic S, Su XC, Dixon NE, Otting G (2006) Amino-acid type identification in 15N-HSQC spectra by combinatorial selective 15N-labelling. J Biomol NMR 34:13–21

    Article  Google Scholar 

  • Yabuki T, Kigawa T, Dohmae N, Takio K, Terada T, Ito Y, Laue ED, Cooper JA, Kainosho M, Yokoyama S (1998) Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. J Biomol NMR 11:295–306

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DO545/7-1 and SFB 807), NIH (U54 GM094608) and the Cluster of Excellence Frankfurt (Macromolecular Complexes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Dötsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löhr, F., Reckel, S., Karbyshev, M. et al. Combinatorial triple-selective labeling as a tool to assist membrane protein backbone resonance assignment. J Biomol NMR 52, 197–210 (2012). https://doi.org/10.1007/s10858-012-9601-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9601-1

Keywords

Navigation