Skip to main content
Log in

Differentiation of endometrial stem cells into insulin-producing cells using signaling molecules and zinc oxide nanoparticles, and three-dimensional culture on nanofibrous scaffolds

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Diabetes mellitus is the most common metabolic disorder with a high mortality and morbidity rate. A new promising strategy to treat DM is pancreatic tissue engineering. We described a 3D culture system accompanied by signaling factors to differentiate hEnSCs into IPCs in the presence of nZnO. We isolated EnSCs and cultured it in DMEM/F12 medium. Nanofibrous PLA/Cs scaffold was prepared through the electrospinning method. The morphological properties of the scaffolds and cells were evaluated by SEM. MTT assay was used to investigate the metabolic activity of the hEnSCs cultured on the scaffolds and a four-stage protocol was applied to differentiate hEnSCs. The differentiated cells were tested for pancreatic markers by immunocytochemistry, qRT-PCR and DTZ staining. The results of this study revealed that hEnSCs cultured on PLA/Cs scaffold and treated with nZnO can efficiently differentiate into IPCs. The examination of differentiated cell morphology showed their near similarity with pancreatic islet cells, and DTZ staining emphasized the presence of insulin granules inside their cytoplasm. Moreover, qRT-PCR and immunofluorescent staining results showed the efficient expression of specific gene markers of IPCs in resultant differentiated cells. Moreover, PLA/CS and nZnO were able to provide a good nanoenvironment for the differentiation of hEnSCs into IPCS the in presence of other molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Forouhi NG. Epidemiology of diabetes. Med (Abingdon). 2014;42(12):698–702. https://doi.org/10.1016/j.mpmed.2014.09.007.

    Article  Google Scholar 

  2. Elham H, Fardin F, Mahmod H. The roles of the co-culture of mEScs with pancreatic islets and liver stromal cells in the differentiation of definitive endoderm cells. Biol: J Int Assoc Biol Stand. 2017;45:9–14. https://doi.org/10.1016/j.biologicals.2016.11.001.

    Article  CAS  Google Scholar 

  3. Bretzel RG, Brendel MD. Pancreatic islet and stem cell transplantation: new strategies in cell therapy of diabetes mellitus. Panminerva Med. 2004;46(1):25–42.

    CAS  Google Scholar 

  4. Hoveizi E, Nabiuni M, Parivar K, Ai J, Massumi M. Definitive endoderm differentiation of human-induced pluripotent stem cells using signaling molecules and IDE1 in three-dimensional polymer scaffold. J Biomed Mater Res Part A. 2014;102(11):4027–36. https://doi.org/10.1002/jbm.a.35039.

    Article  CAS  Google Scholar 

  5. Mutlu L, Taylor HS. The endometrium as a source of mesenchymal stem cells for regenerative medicine. Biol Reprod. 2015;92(6):138. https://doi.org/10.1095/biolreprod.114.126771.

    Article  CAS  Google Scholar 

  6. Tavakol S, Musavi SMM, Tavakol B, Hoveizi E, Ai J, Rezayat SM. Noggin along with a self-assembling peptide nanofiber containing long motif of laminin induces tyrosine hydroxylase gene expression. Mol Neurobiol. 2017;54(6):4609–16. https://doi.org/10.1007/s12035-016-0006-0.

    Article  CAS  Google Scholar 

  7. Ebrahimi-Barough S, Hoveizi E, Yazdankhah M, Ai J, Khakbiz M, Faghihi F, et al. Inhibitor of PI3K/Akt signaling pathway small molecule promotes motor neuron differentiation of human endometrial stem cells cultured on electrospun biocomposite polycaprolactone/collagen scaffolds. Mol Neurobiol. 2017;54(4):2547–54. https://doi.org/10.1007/s12035-016-9828-z.

    Article  CAS  Google Scholar 

  8. Ebrahimi-Barough S, Saberi H, Joghataei MT, Rahbarghazi R, Mirzaei E, Faghihi F. et al. Evaluation of motor neuron-like cell differentiation of hEnSCs on biodegradable PLGA nanofiber scaffolds. J Mol Neurobiol. 2015;52(3):1704–13. https://doi.org/10.1007/s12035-014-8931-2.

    Article  CAS  Google Scholar 

  9. Shamosi A, Azami M, Ebrahimi-Barough S, Siavashi V, Ghanbari H, Sharifi E, Roozafzoon R, Ai J. Differentiation of human endometrial stem cells into endothelial-like cells on gelatin/chitosan/bioglass nanofibrous scaffolds. Artif Cells Nanomed Biotechnol. 2017;45(1):163–73.

    Article  CAS  Google Scholar 

  10. Sharifi E, Panahi M, Azami M, Ai A, Barabadi Z, Kajbafzadeh AM. In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells’ behavior on gelatin/collagen/bioglass nanofibers’ scaffolds. J Biomed Mater Res A. 2016;104(9):2210–9. https://doi.org/10.1002/jbm.a.35748.

    Article  CAS  Google Scholar 

  11. Ebrahimi-Barough S, Hoveizi E, Norouzi Javidan A, Ai J. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J Biomed Mater Res Part A. 2015;103(8):2621–7. https://doi.org/10.1002/jbm.a.35397.

    Article  CAS  Google Scholar 

  12. Shih HP, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol. 2013;29:81–105. https://doi.org/10.1146/annurev-cellbio-101512-122405.

    Article  CAS  Google Scholar 

  13. Hoveizi E, Massumi M, Ebrahimi-barough S, Tavakol S, Ai J. Differential effect of Activin A and WNT3a on definitive endoderm differentiation on electrospun nanofibrous PCL scaffold. Cell Biol Int. 2015;39(5):591–9. https://doi.org/10.1002/cbin.10430.

    Article  CAS  Google Scholar 

  14. Tavakol S, Azami M, Khoshzaban A, Ragerdi Kashani I, Tavakol B, Hoveizi E, et al. Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat. Cell Biol Int. 2013;37(11):1181–9. https://doi.org/10.1002/cbin.10143.

    Article  CAS  Google Scholar 

  15. Hoveizi E, Tavakol S, Ebrahimi-Barough S. Neuroprotective effect of transplanted neural precursors embedded on PLA/CS scaffold in an animal model of multiple sclerosis. Mol Neurobiol. 2015;51(3):1334–42. https://doi.org/10.1007/s12035-014-8812-8.

    Article  CAS  Google Scholar 

  16. Gupta KC, Choi YR, Kang IK. Nanofibrous scaffolds in biomedical applications. Biomaterials Research. 2014;18(5). https://doi.org/10.1186/2055-7124-18-5.

  17. Xu T, Yang H, Yang D, Yu ZZ. Polylactic acid nanofiber scaffold decorated with chitosan island like topography for bone tissue engineering. ACS Appl Mater Interfaces. 2017;9(25):21094–104.

    Article  CAS  Google Scholar 

  18. Hoveizi E, Ebrahimi-Barough S, Tavakol S, Sanamiri K. In vitro differentiation of human iPS cells into neural like cells on a biomimetic polyurea. Mol Neurobiol. 2017;54(1):601–7. https://doi.org/10.1007/s12035-015-9663-7.

    Article  CAS  Google Scholar 

  19. Frassinetti S, Caltavuturo L, Cini M, Croce CD. The role of zinc in life: a review. J Environ Pathol Toxicol Oncol. 2006;25(3):597–610.

    Article  CAS  Google Scholar 

  20. Umrani RD. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomed (Lond). 2014;9(1):89–104. https://doi.org/10.2217/nnm.12.205.

    Article  CAS  Google Scholar 

  21. Hoveizi E, Nabiuni M, Parivar K, Rajabi-Zeleti S, Tavakol S. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Cell Biol Int. 2014;38(1):41–9. https://doi.org/10.1002/cbin.10178.

    Article  CAS  Google Scholar 

  22. Fayazi M, Ziaei S. Characteristics of human endometrial stem cells in tissue and isolated cultured cells: an immunohistochemical aspect. Iran Biomed J. 2016;20(2):109–16. https://doi.org/10.7508/ibj.2016.02.006.

    Article  Google Scholar 

  23. Tavakol S, Mousavi SMM, Tavakol B, Hoveizi E, Ai J, Sorkhabadi SMR. Erratum to: mechano-transduction signals derived from self-assembling peptide nanofibers containing long motif of laminin influence neurogenesis in in-vitro and in-vivo. Mol Neurobiol. 2017;54(4):2497. https://doi.org/10.1007/s12035-016-0068-z.

    Article  CAS  Google Scholar 

  24. Choudhery MS, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014;12(8). https://doi.org/10.1186/1479-5876-12-8.

  25. Tavakol S, Musavi SMM, Tavakol B, Hoveizi E, Ai J, Rezayat SM. Erratum to: noggin along with a self-assembling peptide nanofiber containing long motif of laminin induces tyrosine hydroxylase gene expression. Mol Neurobiol. 2017;54(6):4617. https://doi.org/10.1007/s12035-016-0069-y.

    Article  CAS  Google Scholar 

  26. Bayat N, Ardakan MM, Ai A, Kamyab A, Babaloo N, Ai J. Differentiation of human endometrial stem cells into schwann cells in fibrin hydrogel as 3D culture. Mol Neurobiol. 2016;53(10):7170–6.

    Article  CAS  Google Scholar 

  27. Hoveizi E, Ebrahimi-Barough S, Tavakol S, Nabiuni M. In vitro comparative survey of cell adhesion and proliferation of human induced pluripotent stem cells on surfaces of polymeric electrospun nanofibrous and solution-cast film scaffolds. J Biomed Mater Res Part A. 2015;103(9):2952–8. https://doi.org/10.1002/jbm.a.35420.

    Article  CAS  Google Scholar 

  28. Vasita R. Nanofibers and their applications in tissue engineering. Int J Nanomed. 2006;1(1):15–30.

    Article  CAS  Google Scholar 

  29. Niknamasl A, Soleimani M, Azami M, Salmani MK, Lotfibakhshaiesh N, Ebrahimi-Barough S. A new approach for pancreatic tissue engineering: human endometrial stem cells encapsulated in fibrin gel can differentiate to pancreatic islet beta-cell. Cell Biol Int. 2014;38(10):1174–82. https://doi.org/10.1002/cbin.10314.

    Article  CAS  Google Scholar 

  30. Hoveizi E, Tavakol S, Karima O, Nasiri-Khalili MA. Small molecules differentiate definitive endoderm from human induced pluripotent stem cells on PCL scaffold. Appl Biochem Biotechnol. 2014;173(7):1727–36. https://doi.org/10.1007/s12010-014-0960-9.

    Article  CAS  Google Scholar 

  31. Wijesekara N, Wheeler MB. Zinc, a regulator of islet function and glucose homeostasis. Diabetes Obes Metab. 2009;4:202–14. https://doi.org/10.1111/j.1463-1326.2009.01110.x.

  32. Ranasinghe P, Galappatthy P, Katulanda P, Constantine GR. Zinc and diabetes mellitus: understanding molecular mechanisms and clinical implications. DARU J Pharmaceut Sci. 2015;23(44). https://doi.org/10.1186/s40199-015-0127-4.

  33. Kroon E, Kadoya K, Bang AG, Kelly OG, Eliazer S, Martinson LA. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443–52.

    Article  CAS  Google Scholar 

  34. Sulzbacher S, Truong TT, Wobus AM. Activin A-induced differentiation of embryonic stem cells into endoderm and pancreatic progenitors-the influence of differentiation factors and culture conditions. Stem Cell Rev. 2009;5(2):159–73.

    Article  CAS  Google Scholar 

  35. Massumi M, Hoveizi E, Baktash P, Hooti A, Ghazizadeh L, Nadri S, et al. Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Exp Cell Res. 2014;322(1):51–61. https://doi.org/10.1016/j.yexcr.2014.01.006.

    Article  CAS  Google Scholar 

  36. Fukada T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics. 2011;3(7):662–74. https://doi.org/10.1039/c1mt00011j.

    Article  CAS  Google Scholar 

  37. Haase H. Zinc signals and immune function. Biofactors. 2014;40(1):27–40. https://doi.org/10.1002/biof.1114.

    Article  CAS  Google Scholar 

  38. Lu Q, Haragopal H, Slepchenko KG, Stork C, Li YC. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int J Physiol Pathophysiol Pharmacol. 2016;8(1):35–43.

    CAS  Google Scholar 

  39. Miyazaki S, Miyazaki J. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes Obes Metab. 2004;53(4):1030–7.

    CAS  Google Scholar 

  40. Latif ZA, Noel J, Alejandro R. A simple method of staining fesh and cultured islets. Transplantation. 1988;45(4):827–30. https://doi.org/10.1210/en.2009-0267.

    Article  CAS  Google Scholar 

  41. D’Amour KA, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Bang AG. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24(11):1392–401.

    Article  Google Scholar 

Download references

Funding

This study financially supported by vice-chancellor of research affairs of the Iranian Council for Stem Cell Sciences and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Hoveizi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoveizi, E., Mohammadi, T. Differentiation of endometrial stem cells into insulin-producing cells using signaling molecules and zinc oxide nanoparticles, and three-dimensional culture on nanofibrous scaffolds. J Mater Sci: Mater Med 30, 101 (2019). https://doi.org/10.1007/s10856-019-6301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-019-6301-3

Navigation