Skip to main content
Log in

Small Molecules Differentiate Definitive Endoderm from Human Induced Pluripotent Stem Cells on PCL Scaffold

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Human induced pluripotent stem cells (hiPSCs) are attractive sources of cells for disease modeling in vitro, and they may eventually provide access to cells/tissues for the treatment of many degenerative diseases. Stepwise differentiation from hiPSCs to definitive endoderm (DE) will identify a key step in hepatocytes and beta cell development and may prove useful for transplantation therapy for liver diseases and diabetes. Inducer of definitive endoderm 1 (IDE1) is known to play an important role in the regional specification of DE. Here, we have investigated the effect of stimulation with IDE1 on the development of hiPSCs into DE cells in three-dimensional (3D) cultures. The differentiation was determined by immunofluorescence staining with Sox17, FoxA2, and goosecoid (Gsc) and also by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis. In this study, we showed that hiPSCs with 6-day IDE1 treatment (as chemical tool) on poly(ε-caprolactone) (PCL) nanofibrous scaffold were able to differentiate into DE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hosoya, M. (2012). Preparation of pancreatic beta-cells from human iPS cells with small molecules. Islets, 4, 249–252.

    Article  Google Scholar 

  2. Liu, Z., Tang, Y., Lu, S., Zhou, J., Du, Z., Duan, C., Li, Z., & Wang, C. (2013). The tumourigenicity of iPS cells and their differentiated derivates. Journal of Cellular and Molecular Medicine. doi:10.1111/jcmm.12062.

    Google Scholar 

  3. Hosoya, M., Kunisada, Y., Kurisaki, A., & Asashima, M. (2012). Induction of differentiation of undifferentiated cells into pancreatic beta cells in vertebrates. International Journal of Developmental Biology, 56, 313–323.

    CAS  Google Scholar 

  4. Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., Hoskins, E. E., Kalinichenko, V. V., Wells, S. I., Zorn, A. M., Shroyer, N. F., & Wells, J. M. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470, 105–109.

    Article  CAS  Google Scholar 

  5. Illing, A., Stockmann, M., Swamy Telugu, N., Linta, L., Russell, R., Muller, M., Seufferlein, T., Liebau, S., & Kleger, A. (2013). Definitive endoderm formation from plucked human hair-derived induced pluripotent stem cells and SK channel regulation. Stem Cells International, 2013, 360573.

    Article  CAS  Google Scholar 

  6. McLean, A. B., D'Amour, K. A., Jones, K. L., Krishnamoorthy, M., Kulik, M. J., Reynolds, D. M., Sheppard, A. M., Liu, H., Xu, Y., Baetge, E. E., & Dalton, S. (2007). Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. Stem Cells, 25, 29–38.

    Article  CAS  Google Scholar 

  7. Diekmann, U., Naujok, O., Blasczyk, R., & Muller, T. (2013). Embryonic stem cells of the non-human primate Callithrix jacchus can be differentiated into definitive endoderm by activin-A but not IDE-1/2. Journal of Tissue Engineering and Regenerative Medicine. doi:10.1002/term.1709.

    Google Scholar 

  8. Paca, A., Seguin, C. A., Clements, M., Ryczko, M., Rossant, J., Rodriguez, T. A., & Kunath, T. (2012). BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Developmental Biology, 361, 90–102.

    Article  CAS  Google Scholar 

  9. Meng, Z. X., Wang, Y. S., Ma, C., Zheng, W., Li, L., & Zheng, Y. F. (2010). Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Materials Science and Engineering: C, 30, 1204–1210.

    CAS  Google Scholar 

  10. Ghasemi-Mobarakeh, L., Morshed, M., Karbalaie, K., Fesharaki, M. A., Nematallahi, M., Nasr-Esfahani, M. H., & Baharvand, H. (2009). The thickness of electrospun poly (epsilon-caprolactone) nanofibrous scaffolds influences cell proliferation. International Journal of Artificial Organs, 32, 150–158.

    CAS  Google Scholar 

  11. Reed, C. R., Han, L., Andrady, A., Caballero, M., Jack, M. C., Collins, J. B., Saba, S. C., Loboa, E. G., Cairns, B. A., & van Aalst, J. A. (2009). Composite tissue engineering on polycaprolactone nanofiber scaffolds. Annals of Plastic Surgery, 62, 505–512.

    Article  CAS  Google Scholar 

  12. Lin, H. Y., Kuo, Y. J., Chang, S. H., & Ni, T. S. (2013). Characterization of electrospun nanofiber matrices made of collagen blends as potential skin substitutes. Biomedical Materials, 8, 025009.

    Article  CAS  Google Scholar 

  13. Rim, N. G., Shin, C. S., & Shin, H. (2013). Current approaches to electrospun nanofibers for tissue engineering. Biomedical Materials, 8, 014102.

    Article  CAS  Google Scholar 

  14. Chao, G., Xiaobo, S., Chenglin, C., Yinsheng, D., Yuepu, P., & Pinghua, L. (2009). A cellular automaton simulation of the degradation of porous polylactide scaffold: I. Effect of porosity. Materials Science and Engineering: C, 29, 1950–1958.

    Google Scholar 

  15. Xing, Z. C., Han, S. J., Shin, Y. S., Koo, T. H., Moon, S., Jeong, Y., & Kang, I. K. (2013). Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering. Journal of Biomaterials Science, Polymer Edition. doi:10.1163/156856212X623526.

    Google Scholar 

  16. Massumi, M., Hoveizi, E., Baktash, P., Hooti, A., Ghazizadeh, L., Nadri, S., Pourasgari, F., Hajarizadeh, A., Soleimani, M., Nabiuni, M., & Khorramizadeh, M. R. (2014). Efficient programming of human eye conjunctiva-derived induced pluripotent stem (ECiPS) cells into definitive endoderm-like cells. Experimental Cell Research, 322, 51–61.

    Article  CAS  Google Scholar 

  17. D'Amour, K. A., Agulnick, A. D., Eliazer, S., Kelly, O. G., Kroon, E., & Baetge, E. E. (2005). Efficient differentiation of human embryonic stem cells to definitive endoderm. Nature Biotechnology, 23, 1534–1541.

    Article  CAS  Google Scholar 

  18. Kroon, E., Martinson, L. A., Kadoya, K., Bang, A. G., Kelly, O. G., Eliazer, S., Young, H., Richardson, M., Smart, N. G., Cunningham, J., Agulnick, A. D., D'Amour, K. A., Carpenter, M. K., & Baetge, E. E. (2008). Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nature Biotechnology, 26, 443–452.

    Article  CAS  Google Scholar 

  19. Maehr, R., Chen, S., Snitow, M., Ludwig, T., Yagasaki, L., Goland, R., Leibel, R. L., & Melton, D. A. (2009). Generation of pluripotent stem cells from patients with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 106, 15768–15773.

    CAS  Google Scholar 

  20. Hoveizi, E., Nabiuni, M., Parivar, K., Ai, J., & Massumi, M. (2013). Definitive endoderm differentiation of human induced pluripotent stem cells (hiPSCs) using signaling molecules and IDE1 in three-dimensional polymer scaffold. Journal of Biomedical Materials Research. Part A. doi:10.1002/jbm.a.35039.

    Google Scholar 

  21. Filby, C. E., Williamson, R., van Kooy, P., Pebay, A., Dottori, M., Elwood, N. J., & Zaibak, F. (2011). Stimulation of Activin A/Nodal signaling is insufficient to induce definitive endoderm formation of cord blood-derived unrestricted somatic stem cells. Stem Cell Research and Therapy, 2, 16.

    Article  CAS  Google Scholar 

  22. Borowiak, M., Maehr, R., Chen, S., Chen, A. E., Tang, W., Fox, J. L., Schreiber, S. L., & Melton, D. A. (2009). Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell, 4, 348–358.

    Article  CAS  Google Scholar 

  23. Chen, S., Borowiak, M., Fox, J. L., Maehr, R., Osafune, K., Davidow, L., Lam, K., Peng, L. F., Schreiber, S. L., Rubin, L. L., & Melton, D. (2009). A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nature Chemical Biology, 5, 258–265.

    Article  CAS  Google Scholar 

  24. Zaret, K. S. (2001). Hepatocyte differentiation: from the endoderm and beyond. Current Opinion in Genetics and Development, 11, 568–574.

    Article  CAS  Google Scholar 

  25. Wang, Y. J., Qiao, J., Baker, R., & Zhang, J. (2013). Alkaline polymer electrolyte membranes for fuel cell applications. Chemical Society Reviews. doi:10.1039/c3cs60053j.

    Google Scholar 

  26. Gillette, B. M., Rossen, N. S., Das, N., Leong, D., Wang, M., Dugar, A., & Sia, S. K. (2011). Engineering extracellular matrix structure in 3D multiphase tissues. Biomaterials, 32, 8067–8076.

    Article  CAS  Google Scholar 

  27. Cho, C. S., Seo, S. J., Park, I. K., Kim, S. H., Kim, T. H., Hoshiba, T., Harada, I., & Akaike, T. (2006). Galactose-carrying polymers as extracellular matrices for liver tissue engineering. Biomaterials, 27, 576–585.

    Article  CAS  Google Scholar 

  28. Brafman, D. A., Phung, C., Kumar, N., & Willert, K. (2013). Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death and Differentiation, 20, 369–381.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tehran University of Medical Sciences for research assistance and the Iranian Council of Stem Cell Technology and Iran National Science Foundation for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Hoveizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoveizi, E., Khodadadi, S., Tavakol, S. et al. Small Molecules Differentiate Definitive Endoderm from Human Induced Pluripotent Stem Cells on PCL Scaffold. Appl Biochem Biotechnol 173, 1727–1736 (2014). https://doi.org/10.1007/s12010-014-0960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0960-9

Keywords

Navigation