Skip to main content
Log in

Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering

  • Biomaterials Synthesis and Characterization
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

One of the key components of tissue engineering is a scaffold with suitable morphology, outstanding mechanical properties, and favorable biocompatibility. In this study, β-tricalcium phosphate (β-TCP) nanoparticles were synthesized and incorporated with poly(l-lactic acid) (PLLA) to fabricate nanocomposite scaffolds by the thermally induced phase separation method. The PLLA/β-TCP nanocomposite scaffolds showed a continuous nanofibrous PLLA matrix with strut diameters of 100–750 nm, interconnected micropores with pore diameters in the range of 0.5–10 μm, and high porosity (>92 %). β-TCP nanoparticles were homogeneously dispersed in the PLLA matrix, which significantly improved the compressive modulus and protein adsorption capacity. The prepared nanocomposite scaffolds provided a suitable microenvironment for osteoblast attachment and proliferation, demonstrating the potential of the PLLA/β-TCP nanocomposite scaffolds in bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Holzapfel BM, Reichert JC, Schantz JT, Gbureck U, Rackwitz L, Noth U, et al. How smart do biomaterials need to be? A translational science and clinical point of view. Adv Drug Deliv Rev. 2013;65(4):581–603. doi:10.1016/j.addr.2012.07.009.

    Article  Google Scholar 

  2. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5(1):1–13. doi:10.1016/j.actbio.2008.09.013.

    Article  Google Scholar 

  3. Perez RA, Won JE, Knowles JC, Kim HW. Naturally and synthetic smart composite biomaterials for tissue regeneration. Adv Drug Deliv Rev. 2013;65(4):471–96. doi:10.1016/j.addr.2012.03.009.

    Article  Google Scholar 

  4. Zong C, Qian X, Tang Z, Hu Q, Chen J, Gao C, et al. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds. J Biomed Nanotechnol. 2014;10(6):1091–104. doi:10.1166/jbn.2014.1696.

    Article  Google Scholar 

  5. Jin HH, Kim DH, Kim TW, Shin KK, Jung JS, Park HC, et al. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol. 2012;51(5):1079–85. doi:10.1016/j.ijbiomac.2012.08.027.

    Article  Google Scholar 

  6. Lu L, Zhang Q, Wootton D, Chiou R, Li D, Lu B, et al. Biocompatibility and biodegradation studies of PCL/beta-TCP bone tissue scaffold fabricated by structural porogen method. J Mater Sci Mater Med. 2012;23(9):2217–26. doi:10.1007/s10856-012-4695-2.

    Article  Google Scholar 

  7. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol. 2010;47(1):1–4. doi:10.1016/j.ijbiomac.2010.03.015.

    Article  Google Scholar 

  8. Yang C, Cheng K, Weng W. OTS-modified HA and its toughening effect on PLLA/HA porous composite. J Mater Sci Mater Med. 2009;20(3):667–72. doi:10.1007/s10856-008-3604-1.

    Article  Google Scholar 

  9. Lou T, Wang X, Song G. Fabrication of nano-fibrous poly(l-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Int J Biol Macromol. 2013;61C:353–8. doi:10.1016/j.ijbiomac.2013.07.025.

    Article  Google Scholar 

  10. Davidenko N, Gibb T, Schuster C, Best SM, Campbell JJ, Watson CJ, et al. Biomimetic collagen scaffolds with anisotropic pore architecture. Acta Biomater. 2012;8(2):667–76. doi:10.1016/j.actbio.2011.09.033.

    Article  Google Scholar 

  11. Lou T, Leung M, Wang X, Chang JYF, Tsao CT, Sham JGC, et al. Bi-layer scaffold of chitosan/PCL-nanofibrous mat and PLLA-microporous disc for skin tissue engineering. J Biomed Nanotechnol. 2014;10(6):1105–13. doi:10.1166/jbn.2014.1793.

    Article  Google Scholar 

  12. Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv. 2013;31(5):654–68. doi:10.1016/j.biotechadv.2012.08.001.

    Article  Google Scholar 

  13. Cao H, Kuboyama N. A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone. 2010;46(2):386–95. doi:10.1016/j.bone.2009.09.031.

    Article  Google Scholar 

  14. Sarkar SD, Farrugia BL, Dargaville TR, Dhara S. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J Biomed Mater Res A. 2013;101(12):3482–92. doi:10.1002/jbm.a.34660.

    Article  Google Scholar 

  15. Kim HN, Jiao A, Hwang NS, Kim MS, Kang do H, Kim DH, et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2013;65(4):536–58. doi:10.1016/j.addr.2012.07.014.

    Article  Google Scholar 

  16. Jana S, Zhang M. Fabrication of 3D aligned nanofibrous tubes by direct electrospinning. J Mater Chem B. 2013;1(20):2575. doi:10.1039/c3tb20197j.

    Article  Google Scholar 

  17. Holmes B, Castro NJ, Zhang LG, Zussman E. Electrospun fibrous scaffolds for bone and cartilage tissue generation: recent progress and future developments. Tissue Eng B. 2012;18(6):478–86. doi:10.1089/ten.TEB.2012.0096.

    Article  Google Scholar 

  18. Beachley V, Wen X. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci. 2010;35(7):868–92. doi:10.1016/j.progpolymsci.2010.03.003.

    Article  Google Scholar 

  19. Liu X, Smith LA, Hu J, Ma PX. Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials. 2009;30(12):2252–8. doi:10.1016/j.biomaterials.2008.12.068.

    Article  Google Scholar 

  20. Wang XJ, Song GJ, Lou T. Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Med Eng Phys. 2010;32(4):391–7. doi:10.1016/j.medengphy.2010.02.002.

    Article  Google Scholar 

  21. Wei G, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25(19):4749–57. doi:10.1016/j.biomaterials.2003.12.005.

    Article  Google Scholar 

  22. Daculsi G, Goyenvalle E, Cognet R, Aguado E, Suokas EO. Osteoconductive properties of poly(96L/4d-lactide)/beta-tricalcium phosphate in long term animal model. Biomaterials. 2011;32(12):3166–77. doi:10.1016/j.biomaterials.2011.01.033.

    Article  Google Scholar 

  23. Jones JR. Review of bioactive glass: from hench to hybrids. Acta Biomater. 2013;9(1):4457–86. doi:10.1016/j.actbio.2012.08.023.

    Article  Google Scholar 

  24. Goswami J. Processing and characterization of poly(lactic acid) based bioactive composites for biomedical scaffold application. Express Polym Lett. 2013;7(9):767–77. doi:10.3144/expresspolymlett.2013.74.

    Article  Google Scholar 

  25. Wang XJ, Song GJ, Lou T, Peng WJ. Fabrication of nano-fibrous PLLA scaffold reinforced with chitosan fibers. J Biomater Sci Polym Ed. 2009;20(14):1995–2002. doi:10.1163/156856208x396083.

    Article  Google Scholar 

  26. Woo KM, Seo J, Zhang R, Ma PX. Suppression of apoptosis by enhanced protein adsorption on polymer/hydroxyapatite composite scaffolds. Biomaterials. 2007;28(16):2622–30. doi:10.1016/j.biomaterials.2007.02.004.

    Article  Google Scholar 

  27. Rnjak-Kovacina J, Wise SG, Li Z, Maitz PK, Young CJ, Wang Y, et al. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering. Biomaterials. 2011;32(28):6729–36. doi:10.1016/j.biomaterials.2011.05.065.

    Article  Google Scholar 

  28. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461–6. doi:10.1016/j.biomaterials.2009.09.063.

    Article  Google Scholar 

  29. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54. doi:10.1016/j.tibtech.2012.07.005.

    Article  Google Scholar 

  30. Ebrahimian-Hosseinabadi M, Ashrafizadeh F, Etemadifar M, Venkatraman SS. Preparation and mechanical behavior of PLGA/nano-BCP composite scaffolds during in vitro degradation for bone tissue engineering. Polym Degrad Stab. 2011;96(10):1940–6. doi:10.1016/j.polymdegradstab.2011.05.016.

    Article  Google Scholar 

  31. Huang S, Chen Z, Pugno N, Chen Q, Wang W. A novel model for porous scaffold to match the mechanical anisotropy and the hierarchical structure of bone. Mater Lett. 2014;122:315–9. doi:10.1016/j.matlet.2014.02.057.

    Article  Google Scholar 

  32. Wan Y, Wu H, Cao X, Dalai S. Compressive mechanical properties and biodegradability of porous poly(caprolactone)/chitosan scaffolds. Polym Degrad Stab. 2008;93(10):1736–41. doi:10.1016/j.polymdegradstab.2008.08.001.

    Article  Google Scholar 

  33. Li L, Qian Y, Jiang C, Lv Y, Liu W, Zhong L, et al. The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials. 2012;33(12):3428–45. doi:10.1016/j.biomaterials.2012.01.038.

    Article  Google Scholar 

  34. Koh HS, Yong T, Chan CK, Ramakrishna S. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials. 2008;29(26):3574–82. doi:10.1016/j.biomaterials.2008.05.014.

    Article  Google Scholar 

  35. Depan D, Misra RD. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure-function property relationship. Acta Biomater. 2013;9(4):6084–94. doi:10.1016/j.actbio.2012.12.019.

    Article  Google Scholar 

  36. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26(31):6176–84. doi:10.1016/j.biomaterials.2005.03.027.

    Article  Google Scholar 

  37. Krishnan R, Rajeswari R, Venugopal J, Sundarrajan S, Sridhar R, Shayanti M, et al. Polysaccharide nanofibrous scaffolds as a model for in vitro skin tissue regeneration. J Mater Sci Mater Med. 2012;23(6):1511–9. doi:10.1007/s10856-012-4630-6.

    Article  Google Scholar 

  38. Holzwarth JM, Ma PX. Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials. 2011;32(36):9622–9. doi:10.1016/j.biomaterials.2011.09.009.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from Department of Science & Technology of Shandong Province (No. 2011YD21025, ZR2014EMM014). The authors acknowledge Dr. Stephen J. Florczyk for critical revision of the manuscript and assistance with grammar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Lou or Xuejun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, T., Wang, X., Song, G. et al. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. J Mater Sci: Mater Med 26, 34 (2015). https://doi.org/10.1007/s10856-014-5366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5366-2

Keywords

Navigation