Skip to main content
Log in

Evaluation of the physical and antimicrobial properties of silver doped hydroxyapatite depending on the preparation method

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In the present study, the effect of the preparation method on the physical and antibacterial properties of silver doped hydroxyapatite (HAp/Ag) samples was investigated. HAp/Ag with 0.1–5 % of silver was prepared using two different modified wet chemical precipitation methods. A comparison of thermal stability and thermodynamical properties indicated that the thermal stability and sintering temperature of HAp/Ag were higher than those of pure hydroxyapatite if Ca(NO3)2·4H2O, AgNO3, NH4OH and (NH4)2HPO4 were used as raw materials. Phase composition and silver release were determined by XRD and ICP-MS. The study showed that, after 50 h in simulated body fluid 0.8–1.8 % of silver of the total silver amount was released from compact HAp/Ag scaffolds, and release kinetics strongly depended on the HAp/Ag preparation method. In vitro antibacterial activity of samples from each method against the bacterial strains Staphylococcus epidermidis and Pseudomonas aeruginosa was approved. Results showed that, in the case of using Ca(OH)2, H3PO4 and AgNO3 as raw materials for HAp/Ag synthesis, higher antibacterial activity towards both bacterial strains could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suwanprateeb J, Thammarakcharoen F, Wasoontararat K, Chokevivat W, Phanphiriya P. Single step preparation of nanosilver loaded calcium phosphate by low temperature co-conversion process. J Mater Sci Mater Med. 2012. doi:10.1007/s10856-012-4690-7.

    Google Scholar 

  2. Nath S, Kalmodia S, Basu B. Densification, phase stability and in vitro biocompatibility property of hydroxyapatite-10 wt% silver composites. J Mater Sci. 2010;21:1273–87.

    Google Scholar 

  3. De Schrijver I, Aramendia M, Vineze L, Resano M, Dumoulin A, Vanhaecke F. Comparison of atomic absorption, mass and X-ray spectrometry techniques using dissolution-based and solid sampling methods for the determination of silver in polymeric samples. Spectrochim Acta B. 2007;62:1185–94.

    Article  Google Scholar 

  4. Peetsch A, Greulich C, Braun D, Stroetges C, Rehage H, Siebers B, Koller M, Epple M. Silver-doped calcium phosphate nanoparticles: synthesis, characterization, and toxic effects toward mammalian and prokaryotic cells. Colloid Surf B. 2013;102:724–9.

    Article  Google Scholar 

  5. Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Koller M. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater. 2011;7:3505–14.

    Article  Google Scholar 

  6. Petronis S, Petronis J, Zalite V, Locs J, Skagers A, Pilmane M. New biphasic calcium phosphate in orthopedic surgery: first clinical results. IFMBE Proc. 2013;38:174–7.

    Article  Google Scholar 

  7. Salms G, Salma I, Skagers A, Locs J. Cone beam radiodensitometry in evaluation of hydroxyapatite (HAP)/tissue hybrid after maxillary sinus floor elevation. Adv Mater Res. 2011;222:251–4.

    Article  Google Scholar 

  8. Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31:1465–85.

    Article  Google Scholar 

  9. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94.

    Article  Google Scholar 

  10. Vallet-Regı M, González-Calbet JM. Calcium phosphates as substitution of bone tissues. Prog Solid State Chem. 2004;32:1–31.

    Article  Google Scholar 

  11. Thian ES, Konishi T, Kawanobe Y, Lim PN, Choong C, Ho B, Aizawa M. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties. J Mater Sci. 2013;24:437–45.

    Google Scholar 

  12. Pang X, Zhitomirsky I. Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol. 2008;202:3815–21.

    Article  Google Scholar 

  13. Simon V, Albon C, Simon S. Silver release from hydroxyapatite self-assembling calcium–phosphate glasses. J Non-Cryst Solids. 2008;354:1751–5.

    Article  Google Scholar 

  14. Bai X, More K, Rouleau CM, Rabiei A. Functionally graded hydroxyapatite coatings doped with antibacterial components. Acta Biomater. 2010;6:2264–73.

    Article  Google Scholar 

  15. Singh B, Dubey AK, Kumar S, Saha N. In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10xAg x (PO4)6(OH)2 (0.0 ≤ x≤0.5) hydroxyapatites. Mater Sci Eng. 2011;C. 31:1320–9.

    Article  Google Scholar 

  16. Badrour L, Sadel A, Zahir M, Kimakh L, El Hajbi A. Synthesis and physical and chemical characterization of Ca10xAg x (PO4)6(OH)2xx apatites. Ann Chim Sci Mater. 1998;23:61–4.

    Article  Google Scholar 

  17. Chen Y, Zheng X, Xie Y, Ji H, Ding H, Li H, Dai K. Silver release from silver-containing hydroxyapatite coatings. Surf Coat Technol. 2010;205:1892–6.

    Article  Google Scholar 

  18. Ciobanu SC, Massuyeau F, Constantin LV, Predoi D. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 °C. Nanoscale Res Lett. 2011;6:613.

    Article  Google Scholar 

  19. Rameshbabu N, Sampath Kumar TS, Prabhakar TG, Sastry VS, Murty KV, Prasad Rao K. Synthesis and characterization. J Biomed Mater Res A. 2007;80:581–91.

    Article  Google Scholar 

  20. Stanic V, Janackovic D, Dimitrijevic S, Tanaskovic SB, Mitric M, Pavlovic MS, Krstic A, Jovanovic D, Raicevic S. Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci. 2011;257:4510–8.

    Article  Google Scholar 

  21. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J Mater Sci. 1998;19:129–34.

    Google Scholar 

  22. Lim PN, Teo EY, Ho B, Tay BY, Thian ES. Effect of silver content on the antibacterial and bioactive properties os silver-substituted hydroxyapatite. J Biomed Mater Res. 2013;101A:2456–64.

    Article  Google Scholar 

  23. Diaz M, Barba F, Miranda M, Guitian F, Torrecillas R, Moya JS. Synthesis and antimicrobial activity of a silver–hydroxyapatite nanocomposite. J Nanomater. 2009;. doi:10.1155/2009/498505.

    Google Scholar 

  24. Chung RJ, Hsieh MF, Huang KC, Perng LH, Chou FI, Chin TS. Anti-microbial hydroxyapatite particles synthesized by sol–gel route. J Sol–Gel Sci Technol. 2005;33:229–39.

    Article  Google Scholar 

  25. Liu JK, Yang XH, Tian XG. Preparation of silver/hydroxyapatite nanocomposite spheres. Powder Technol. 2008;184:21–4.

    Article  Google Scholar 

  26. Oh KS, Kim KJ, Jeong YK, Choa YH. Effect of fabrication processes on the antimicrobial properties of silver doped nano-sized HAp. Key Eng Mat. 2003;240–42:583–6.

    Article  Google Scholar 

  27. Ciobanu CS, Iconaru SL, Pasuk I, Vasile BS, Lupu AR, Hermenean A, Dinischiotu A, Predoi D. Structural properties of silver doped hydroxyapatite and their biocompatibility. Mater Sci Eng C. 2013;33/3:1395–402.

    Article  Google Scholar 

  28. Shepherd D, Best SM. Production of zinc substituted hydroxyapatite using various precipitation routes. Biomed Mater. 2013;. doi:10.1088/1748-6041/8/2/025003.

    Google Scholar 

  29. Afshar A, Ghorbani M, Ehsani N, Saeri MR, Sorrell CC. Some important factors in the wet precipitation process of hydroxyapatite. Mater Des. 2003;24:197–202.

    Article  Google Scholar 

  30. Catros S, Guillemot F, Lebraud E, Chanseau C, Perez S, Bareille R, Amédée J, Fricain JC. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. IRBM. 2010;31:226–33.

    Article  Google Scholar 

  31. Dubnika A, Loca D, Reinis A, Kodols M, Berzina-Cimdina L. Impact of sintering temperature on the phase composition and antibacterial properties of silver-doped hydroxyapatite. Pure Appl Chem. 2013;85(2):453–62.

    Article  Google Scholar 

  32. Rapacz-Kmita A, Paluszkiewicz C, Ślósarczyk A, Paszkiewicz Z. FTIR and XRD investigations on the thermal stability of hydroxyapatite during hot pressing and pressureless sintering processes. J Mol Struct. 2005;744–47:653–6.

    Article  Google Scholar 

  33. Kukubo T, Takadam H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  34. Kokubo T. Bioceramics and Their Clinical Applications. Cambridge: Woodhead Publishing; 2008.

    Book  Google Scholar 

  35. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S. Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B. 2010;79:340–4.

    Article  Google Scholar 

  36. Vuong C, Otto M. Staphylococcus epidermidis infections. Microbes Infect. 2002;4:481–9.

    Article  Google Scholar 

  37. Toutain CM, Caizza NC, Zegans ME, O’Toole GA. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa. Res Microbiol. 2007;158:471–7.

    Article  Google Scholar 

  38. Trampuz A, Piper KE, Jacobson MJ, Hanssen AD, Unni KK, Osmon DR, Mandrekar JN, Cockerill FR, Steckelberg JM, Greenleaf JF, Patel R. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 2007;357:654–63.

    Article  Google Scholar 

  39. Sampedro MF, Huddleston PM, Piper KE, Karau MJ, Dekutoski MB, Yaszemski MJ, Currier BL, Mandrekar JN, Osmon DR, McDowell A, Patrick S. A biofilm approach to detect bacteria on removed spinal implants. Spine. 2010;35:1218–24.

    Google Scholar 

  40. Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry, vol. 6. New York: Wiley; 1999.

    Google Scholar 

  41. Schon G. ESCA studies of Ag, Ag2O and AgO. Acta Chem Scand. 1973;27:2623–33.

    Article  Google Scholar 

  42. Rahaman MN. Ceramic processing and sintering, vol. 2. London: Taylor & Francis e-Library; 2005.

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by thr Riga Technical University within the Project No. ZP-2012/24 and the European Social Fund within the project “Support for the implementation of doctoral studies at Riga Technical University”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arita Dubnika.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubnika, A., Loca, D., Salma, I. et al. Evaluation of the physical and antimicrobial properties of silver doped hydroxyapatite depending on the preparation method. J Mater Sci: Mater Med 25, 435–444 (2014). https://doi.org/10.1007/s10856-013-5079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-5079-y

Keywords

Navigation