Skip to main content
Log in

Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Protein adsorption onto calcium phosphate (Ca–P) bioceramics utilised in hard tissue implant applications has been highlighted as one of the key events that influences the subsequent biological response, in vivo. This work reports on the use of surface-matrix assisted laser desorption ionisation mass spectrometry (Surface-MALDI-MS) as a technique for the direct detection of foetal bovine serum (FBS) proteins adsorbed to hybrid calcium phosphate/titanium dioxide surfaces produced by a novel radio frequency (RF) magnetron sputtering method incorporating in situ annealing between 500°C and 700°C during deposition. XRD and XPS analysis indicated that the coatings produced at 700°C were hybrid in nature, with the presence of Ca–P and titanium dioxide clearly observed in the outer surface layer. In addition to this, the Ca/P ratio was seen to increase with increasing annealing temperature, with values of between 2.0 and 2.26 obtained for the 700°C samples. After exposure to FBS solution, surface-MALDI-MS indicated that there were significant differences in the protein patterns as shown by unique peaks detected at masses below 23.1 kDa for the different surfaces. These adsorbates were assigned to a combination of growth factors and lipoproteins present in serum. From the data obtained here it is evident that surface-MALDI-MS has significant utility as a tool for studying the dynamic nature of protein adsorption onto the surfaces of bioceramic coatings, which most likely plays a significant role in subsequent bioactivity of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wolke JGC, van Dijk K, Schaeken HG, de Groot K, Jansen JA. Evaluation of plasma-spray and magnetron-sputter Ca–P-coated implants: an in vivo experiment using rabbits. J Biomed Mater Res. 1994;28:1477–84.

    Article  CAS  Google Scholar 

  2. van Dijk K, Schaeken HG, Wolke JGC, Maree CHM, Habraken FHPM, Verhoeven J, Jansen JA. Enhancing osseointegration using surface-modified titanium implants. J Biomed Mater Res. 1995;29:269–76.

    Article  Google Scholar 

  3. van Dijk K, Schaeken HG, Maree CHM, Verhoeven J, Wolke JGC, Habraken FHPM, Jansen JA. Influence of Ar pressure on r.f. magnetron-sputtered Ca5(PO4)3OH layers. Surf Coat Technol. 1995;76–77:206–10.

    Article  Google Scholar 

  4. van Dijk K, Schaeken HG, Wolke JGC, Jansen JA. Influence of annealing temperature on RF magnetron sputtered calcium phosphate coatings. Biomaterials. 1996;17:405–10.

    Article  Google Scholar 

  5. van Dijk K, Verhoeven J, Maree CHM, Habraken FHPM, Jansen JA. Study of the influence of oxygen on the composition of thin films obtained by r.f. sputtering from a Ca5(PO4)3 OH target. Thin Solid Films. 1997;304:191–5.

    Article  Google Scholar 

  6. Wolke JGC, de Groot K, Jansen JA. Dissolution and adhesion behaviour of radio-frequency magnetron-sputtered Ca–P coatings. J Mater Sci. 1998;33:3371–6.

    Article  CAS  Google Scholar 

  7. Boyd AR, Akay M, Meenan BJ. Influence of target surface degradation on the properties of r.f. magnetron-sputtered calcium phosphate coatings. Surf Int Anal. 2003;35:188–98.

    Article  CAS  Google Scholar 

  8. Wolke JGC, van der Waerden JPCM, Schaeken HG, Jansen JA. In vivo dissolution behavior of various RF magnetron-sputtered Ca–P coatings on roughened titanium implants. Biomaterials. 2003;24:2623–9.

    Article  CAS  Google Scholar 

  9. Nelea V, Morosanu C, Iliescu M, Mihailescu IN. Microstructure and mechanical properties of hydroxyapatite thin films grown by RF magnetron sputtering. Surf Coat Technol. 2003;173:315–22.

    Article  CAS  Google Scholar 

  10. Boyd AR, Meenan BJ, Leyland NS. Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution. Surf Coat Technol. 2006;200:6002–13.

    Article  CAS  Google Scholar 

  11. Meenan BJ, Boyd A, Leyland NS, Love E, Akay M. The influence of substrate morphology on the structure and composition of RF sputter deposited calcium phosphate thin films. Bioceramics. 1999;12:471–4.

    CAS  Google Scholar 

  12. Lo WJ, Grant DM, Ball MD, Welsh BS, Howdle SM, Antonov EN, Bagratashvili VN, Popov VK. Physical, chemical, and biological characterization of pulsed laser deposited and plasma sputtered hydroxyapatite thin films on titanium alloy. J Biomed Mater Res. 2000;50:536–45.

    Article  CAS  Google Scholar 

  13. Boyd AR, Duffy H, McCann R, Cairns ML, Meenan BJ. The Influence of argon gas pressure on co-sputtered calcium phosphate thin films. Nucl Instrum Methods Phys Res B. 2007;258:421–8.

    Article  CAS  Google Scholar 

  14. Cairns ML, Meenan BJ, Burke GA, Boyd AR. Effect of nanoscale topography on fibronectin adsorption to sputter deposited calcium phosphate thin films. Int J Nano Biomater. 2008;1:280–98.

    Article  Google Scholar 

  15. Lu Y, Li M, Li S, Wang Z, Zhu R. Plasma-sprayed hydroxyapatite + titania composite bond coat for hydroxyapatite coating on titanium substrate. Biomaterials. 2004;25:4393–403.

    Article  CAS  Google Scholar 

  16. Li H, Khor KA, Cheang P. Impact formation and microstructure characterization of thermal sprayed hydroxyapatite/titania composite coatings. Biomaterials. 2003;24:949–57.

    Article  CAS  Google Scholar 

  17. Lin C, Yen S. Characterization and bond strength of electrolytic HA/TiO2 double layers for orthopedic applications. J Mater Sci Mater Med. 2004;15:1237–46.

    Article  CAS  Google Scholar 

  18. Wang Y, Li Y, Yu H, Ding J, Tang X, Li J, Zhou Y. In situ fabrication of bioceramic composite coatings by laser cladding. Surf Coat Technol. 2005;200:2080–4.

    Article  CAS  Google Scholar 

  19. Manso M, Langlet M, Fernandez M, Vasquez L, Martinez-Duart JM. Surface and interface analysis of hydroxyapatite/TiO2 biocompatible structures. Mater Sci Eng C. 2003;23:451–4.

    Article  Google Scholar 

  20. Milella E, Conentino F, Licciulli A, Massaro C. Preparation and characterisation of titania/hydroxyapatite composite coatings obtained by sol–gel process. Biomaterials. 2001;22:1425–31.

    Article  CAS  Google Scholar 

  21. Kumar RR, Wang M. Functionally graded bioactive coatings of hydroxyapatite/titanium oxide composite system. Mater Lett. 2002;55:133–7.

    Article  Google Scholar 

  22. Boyd AR, Burke GA, Duffy H, Cairns ML, O’Hare P, Meenan BJ. Characterisation of calcium phosphate/titanium dioxide hybrid coatings. J Mater Sci Mater Med. 2008;19:485–98.

    Article  CAS  Google Scholar 

  23. Boyd AR, Duffy H, McCann R, Meenan BJ. Sputter deposition of calcium phosphate/titanium dioxide hybrid thin films. Mater Sci Eng C. 2008;28:228–36.

    Article  CAS  Google Scholar 

  24. Rosengren Å, Pavlovic E, Oscarsson S, Krajewski A, Ravaglioli A, Piancastelli A. Plasma protein adsorption pattern on characterized ceramic biomaterials. Biomaterials. 2002;23:1237–47.

    Article  CAS  Google Scholar 

  25. Rees SG, Hughes Wassell DT, Shellis RP, Embery G. Effect of serum albumin on glycosaminoglycan inhibition of hydroxyapatite formation. Biomaterials. 2004;25:971–7.

    Article  CAS  Google Scholar 

  26. Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials. 2005;26:137–46.

    Article  CAS  Google Scholar 

  27. Sawyer AA, Hennessy KM, Bellis SL. Regulation of mesenchymal stem cell attachment and spreading on hydroxyapatite by RGD peptides and adsorbed serum proteins. Biomaterials. 2005;26:1467–75.

    Article  CAS  Google Scholar 

  28. Sawyer AA, Hennessy KM, Bellis SL. The effect of adsorbed serum proteins, RGD and proteoglycan-binding peptides on the adhesion of mesenchymal stem cells to hydroxyapatite. Biomaterials. 2007;28:383–92.

    Article  CAS  Google Scholar 

  29. Kilpadi KL, Chang P-L, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. J Biomed Mater Res A. 2001;57:258–67.

    Article  CAS  Google Scholar 

  30. Serro AP, Bastos M, Costa Pessoa J, Saramago B. Bovine serum albumin conformational changes upon adsorption on titania and on hydroxyapatite and their relation with biomineralization. J Biomed Mater Res A. 2004;70A:420–7.

    Article  CAS  Google Scholar 

  31. Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials. 1991;12:593–6.

    Article  CAS  Google Scholar 

  32. Yang Y, Glover R, Ong JL. Fibronectin adsorption on titanium surfaces and its effect on osteoblast precursor cell attachment. Colloid Surf B Biointerfaces. 2003;30:291–7.

    Article  CAS  Google Scholar 

  33. Klinger A, Steinberg D, Kohavi D, Sela MN. Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res A. 1997;36:387–92.

    Article  CAS  Google Scholar 

  34. Yang Y, Cavin R, Ong JL. Protein adsorption on titanium surfaces and their effect on osteoblast attachment. J Biomed Mater Res A. 2003;67A:344–9.

    Article  CAS  Google Scholar 

  35. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial–cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1–2):1–18. (and the cited references).

    Article  CAS  Google Scholar 

  36. Omenn GS. Exploring the human plasma proteome. Proteomics. 2005;5:3223–5.

    Article  CAS  Google Scholar 

  37. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.

    Article  CAS  Google Scholar 

  38. Zheng X, Baker H, Hancock WS, Fawaz F, McCaman M, Pungor E Jr. Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnol Prog. 2006;22(5):1294–300.

    Article  CAS  Google Scholar 

  39. Kingshott P, Hoecker H. Adsorption of proteins: assessment methods. In: Somasundaran P, editor. Encyclopedia of surface and colloid science, vol 5. 2st ed. New York: Taylor and Francis; 2006. p. 669–94.

  40. Villar-Garea A, Griese M, Imhof A. Biomarker discovery from body fluids using mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2007;849(1–2):105–14.

    Article  CAS  Google Scholar 

  41. Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev. 1998;17:337–66.

    Article  CAS  Google Scholar 

  42. Kingshott P, St John HAW, Chatelier RC, Griesser HJ. Surface-MALDI mass spectrometry detection of proteins adsorbed in vivo onto contact lenses. J Biomed Mater Res. 2000;49:36–42.

    Article  CAS  Google Scholar 

  43. Griesser HJ, Kingshott P, McArthur SL, McLean KM, Kinsel GR, Timmons RB. Surface-MALDI mass spectrometry in biomaterials research. Biomaterials. 2004;25:4861–75.

    Article  CAS  Google Scholar 

  44. Konashi K, Kambara M, Noshi H, Uemura MJ. X-ray photoelectron spectroscopic (ESCA) study on the surface of hydroxyapatite. J Osaka Dent Univ. 1987;21:1–8.

    Google Scholar 

  45. Roome CM, Adam CD. Crystallite orientation, anisotropic strains in thermally sprayed hydroxyapatite coatings. Biomaterials. 1995;16:691–6.

    Article  CAS  Google Scholar 

  46. Tong W, Chen J, Li X, Feng J, Cao Y, Yang Z, Zhang X. Preferred orientation of plasma sprayed hydroxyapatite coatings. J Mater Sci. 1996;31:3739–42.

    Article  CAS  Google Scholar 

  47. Jha LJ, Santos JD, Knowles JC. Characterization of apatite layer formation on P2O5–CaO, P2O5–CaO–Na2O, and P2O5–CaO–Na2O–Al2O3 glass hydroxyapatite composites. J Biomed Mater Res. 1996;31:481–6.

    Article  CAS  Google Scholar 

  48. Ong JL, Lucas LC, Raikar GN, Weimer JJ, Gregory JC. Surface characterization of ion-beam sputter-deposited Ca–P coatings after in vitro immersion. Colloid Surf A Physiochem Eng Asp. 1994;87:151–62.

    Article  CAS  Google Scholar 

  49. Long JD, Xu S, Foo HY, Diong CH. Syntheses and properties of bioactive Ca–P–Ti thin films synthesized by reactive plasma co-sputtering deposition. Key Eng Mater. 2003;240–242:303–6.

    Article  Google Scholar 

  50. Long J, Xu S, Cai JW, Jiang N, Lu JH, Ostrikov KN, Diong CH. Structure, bonding state and in vitro study of Ca–P–Ti film deposited on Ti6Al4V by RF magnetron sputtering. Mater Sci Eng C Biomim Mater Sens Syst. 2002;20:175–80.

    Article  Google Scholar 

  51. Lee TM, Chang E, Yang CY. Surface characteristics of Ti6Al4V alloy: effect of materials, passivation and autoclaving. J Mater Sci Mater Med. 1998;9:439–48.

    Article  CAS  Google Scholar 

  52. Kumar PM, Badrinarayanan S, Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films. 2000;358:122–30.

    Article  CAS  Google Scholar 

  53. Xu S, Long J, Sim L, Diong CH, Ostrikov K (Ken). RF plasma sputtering deposition of hydroxyapatite bioceramics: synthesis, performance, and biocompatibility. Plasma process. Polymer. 2005;2:373–90.

    CAS  Google Scholar 

  54. Qian WJ, Jacobs JM, Camp DG II, Monroe ME, Moore RJ, Gritsenko MA, Calvano SE, Lowry SF, Xiao W, Moldawer LL, Davis RW, Tompkins RG, Smith RD. Comparative proteome analyses of human plasma following in vivo lipopolysaccharide administration using multidimensional separations coupled with tandem mass spectrometry. Proteomics. 2005;5:572–84.

    Article  CAS  Google Scholar 

  55. iProClass database. http://pir.georgetown.edu/.

  56. Fujita M, Ishihara M, Ono K, Hattori H, Kurita A, Shimizu M, Mitsumaru A, Segawa D, Hinokiyama K, Kusama Y, Kikuchi M, Maehara T. Adsorption of inflammatory cytokines using a heparin-coated extracorporeal circuit. Artif Organs. 2000;26(12):1020–5.

    Article  Google Scholar 

  57. Yan X, Scherphof GL, Kamps JAAM. Liposome opsonization. J Lipsome Res. 2005;15:109–39.

    CAS  Google Scholar 

  58. Sun D-H, Trindade CD, Nakashima Y, Maloney WJ, Goodman SB, Schurman DJ, Smith RL. Human serum opsonization of orthopedic biomaterial particles: protein-binding and monocyte/macrophage. J Biomed Mater Res. 2003;65A:290–8.

    Article  CAS  Google Scholar 

  59. Cedervall T, Lynch I, Foy M, Berggærd T, Donnelly SC, Cagney G, Linse S, Dawson KA. Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angew Chem Int Ed. 2007;46:5754–6.

    Article  CAS  Google Scholar 

  60. Banks RE, Stanley AJ, Cairns DA, Barrett JH, Clarke P, Thompson D, Selby PJ. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin Chem. 2005;51(9):1637–49.

    Article  CAS  Google Scholar 

  61. Zimmerman LJ, Wernke GR, Caprioli RM, Liebler DC. Identification of protein fragments as pattern features in MALDI-MS analysis of serum. J Proteome Res. 2005;4:1672–80.

    Article  CAS  Google Scholar 

  62. Kandori K, Tsuyama S, Tanaka H, Ishikawa T. Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids. Colloids Surf B Biointerfaces. 2007;58:98–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was kindly supported by a RTD Networking grant from Invest Northern Ireland (RTD 375). This work was part of the Centre for Nanostructured Polymer Surfaces for Medical Applications, funded by the Danish Ministry for Science, Technology and Innovation (2002-603-4001-87). The authors would also like to thank Kratos Analytical (UK) for their assistance with the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, A.R., Burke, G.A., Duffy, H. et al. Sputter deposited bioceramic coatings: surface characterisation and initial protein adsorption studies using surface-MALDI-MS. J Mater Sci: Mater Med 22, 71–84 (2011). https://doi.org/10.1007/s10856-010-4180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4180-8

Keywords

Navigation