Skip to main content

Advertisement

Log in

Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

It was hypothesized that human mesenchymal stromal cell (hMSC) can be guided by patterned and plain amorphous diamond (AD), titanium (Ti), tantalum (Ta) and chromium (Cr) coatings, produced on silicon wafer using physical vapour deposition and photolithography. At 7.5 h hMSCs density was 3.0–3.5× higher (P < 0.0003, except Ti) and cells were smaller (68 vs. 102 μm, P 0.000006–0.02) on patterns than on silicon background. HMSC-covered surface of the background silicon was lower on Ti than AD patterns (P = 0.015), but at 5 days this had reversed (P = 0.006). At 7.5 h focal vinculin adhesions and actin cytoskeleton were outgoing from pattern edges so cells assumed geometric square shapes. Patterns allowed induced osteogenesis, but less effectively than plain surfaces, except for AD, which could be used to avoid osseointegration. All these biomaterial patterns exert direct early, intermediate and late guidance on hMSCs and osteogenic differentiation, but indirect interactions exist with cells on silicon background.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Curtis A, Wilkinson C. Topographical control of cells. Biomaterials. 1997;18:1573–83. doi:10.1016/S0142-9612(97)00144-0.

    Article  CAS  PubMed  Google Scholar 

  2. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88. doi:10.1016/S0142-9612(98)00209-9.

    Article  CAS  PubMed  Google Scholar 

  3. Mwenifumbo S, Li M, Chen J, Beye A, Soboyejo W. Cell/surface interactions on laser micro-textured titanium-coated silicon surfaces. J Mater Sci: Mater Med. 2007;18:9–23. doi:10.1007/s10856-006-0658-9.

    Article  CAS  Google Scholar 

  4. Falconnet D, Csucs G, Michelle Grandin H, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials. 2006;27:3044–63. doi:10.1016/j.biomaterials.2005.12.024.

    Article  CAS  PubMed  Google Scholar 

  5. Ito Y. Surface micropatterning to regulate cell functions. Biomaterials. 1999;20:2333–42. doi:10.1016/S0142-9612(99)00162-3.

    Article  CAS  PubMed  Google Scholar 

  6. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7. doi:10.1126/science.284.5411.143.

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Lappalainen R, Santavirta SS. Potential of coatings in total hip replacement. Clin Orthop Relat Res. 2005;430:72–9. doi:10.1097/01.blo.0000150000.75660.ff.

    Article  PubMed  Google Scholar 

  8. Lappalainen R, Selenius M. Joint bearing surfaces and replacement joint design. In: Revell PA, editor. Joint replacement technology. Cambridge, UK: Woodhead Publishing Limited; 2008. p. 176–89.

    Google Scholar 

  9. Stiehler M, Lind M, Mygind T, Baatrup A, Dolatshahi-Pirouz A, Li H, et al. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces. J Biomed Mater Res A. 2008;86:448–58. doi:10.1002/jbm.a.31602.

    PubMed  Google Scholar 

  10. Pirone DM, Qi L, Colecraft H, Chen CS. Spatial patterning of gene expression using surface-immobilized recombinant adenovirus. Biomed Microdevices. 2008;10:561–6. doi:10.1007/s10544-008-9166-7.

    Article  CAS  PubMed  Google Scholar 

  11. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 2004;6:483–95. doi:10.1016/S1534-5807(04)00075-9.

    Article  CAS  PubMed  Google Scholar 

  12. Hart A, Gadegaard N, Wilkinson CDW, Oreffo RO, Dalby MJ. Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. J Mater Sci: Mater Med. 2007;18:1211–8. doi:10.1007/s10856-007-0157-7.

    Article  CAS  Google Scholar 

  13. Berry CC, Curtis ASG, Oreffo ROC, Agheli H, Sutherland DS. Human fibroblast and human bone marrow cell response to lithographically nanopatterned adhesive domains on protein rejecting substrates. IEEE Trans Nanobiosci. 2007;6:201–9. doi:10.1109/TNB.2007.903457.

    Article  CAS  Google Scholar 

  14. Kim SJ, Lee JK, Kim JW, Jung JW, Seo K, Park SB, et al. Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells. J Mater Sci: Mater Med. 2008;19:2953–62. doi:10.1007/s10856-008-3413-6.

    Article  CAS  Google Scholar 

  15. Ber S, Köse ST, Hasirci V. Bone tissue engineering on patterned collagen films: an in vitro study. Biomaterials. 2005;26:1977–86. doi:10.1016/j.biomaterials.2004.07.007.

    Article  CAS  PubMed  Google Scholar 

  16. Luo W, Jones SR, Yousaf MN. Geometric control of stem cell differentiation rate on surfaces. Langmuir. 2008;24:12129–33. doi:10.1021/la802836g.

    Article  CAS  PubMed  Google Scholar 

  17. Dalby MJ, McCloy D, Robertson M, Wilkinson CD, Oreffo RO. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials. 2006;27:1306–15. doi:10.1016/j.biomaterials.2005.08.028.

    Article  CAS  PubMed  Google Scholar 

  18. Sjöström T, Dalby MJ, Hart A, Tare R, Oreffo RO, Su B. Fabrication of pillar-like titania nanostructures on titanium and their interactions with human skeletal stem cells. Acta Biomater. 2009;5:1433–41. doi:10.1016/j.actbio.2009.01.007.

    Article  PubMed  Google Scholar 

  19. Anttila A, Salo J, Lappalainen R. High adhesion of diamond-like films achieved by the pulsed arc-discharge method. Mater Lett. 1995;24:153–6. doi:10.1016/0167-577X(95)00071-2.

    Article  CAS  Google Scholar 

  20. Anttila A, Lappalainen R, Tiainen V, Hakovirta M. Superior attachment of high-quality hydrogen-free amorphous diamond films to solid materials. Adv Mater. 1997;9:1161–4. doi:10.1002/adma.19970091507.

    Article  CAS  Google Scholar 

  21. Owens DK, Wendt RC. Estimation of the surface free energy of polymers. J Appl Polym Sci. 1969;13:1741–7. doi:10.1002/app.1969.070130815.

    Article  CAS  Google Scholar 

  22. Oliveira AL, Malafaya PB, Reis RL. Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials. 2003;24:2575–84. doi:10.1016/S0142-9612(03)00060-7.

    Article  CAS  PubMed  Google Scholar 

  23. Malaval L, Liu F, Roche P, Aubin JE. Kinetics of osteoprogenitor proliferation and osteoblast differentiation in vitro. J Cell Biochem. 1999;74:616–27. doi:10.1002/(SICI)1097-4644(19990915)74:4<616::AID-JCB11>3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  24. Lehto V-P, Virtanen I. Vinculin in cultured bovine lens-forming cells. Cell Differ 1985;16:153–60.

    Article  CAS  PubMed  Google Scholar 

  25. Kunzler TP, Huwiler C, Drobek T, Vörös J, Spencer ND. Systematic study of osteoblast response to nanotopography by means of nanoparticle-density gradients. Biomaterials. 2007;28:5000–6. doi:10.1016/j.biomaterials.2007.08.009.

    Article  CAS  PubMed  Google Scholar 

  26. Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis AS. Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int. 2004;28:229–36. doi:10.1016/j.cellbi.2003.12.004.

    Article  CAS  PubMed  Google Scholar 

  27. Dalby MJ, McCloy D, Robertson M, Agheli H, Sutherland D, Affrossman S, et al. Osteoprogenitor response to semi-ordered and random nanotopographies. Biomaterials. 2006;27:2980–7. doi:10.1016/j.biomaterials.2006.01.010.

    Article  CAS  PubMed  Google Scholar 

  28. Théry M, Racine V, Piel M, Pépin A, Dimitrov A, Chen Y, et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA. 2006;103:19771–6. doi:10.1073/pnas.0609267103.

    Article  PubMed  ADS  Google Scholar 

  29. Jiang X, Bruzewicz DA, Wong A, Piel M, Whitesides GM. Directing cell migration with asymmetric micropatterns, Proc Natl Acad Sci USA. 2005;102:975–8. doi:10.1073/pnas.0408954102.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Hoover DK, Chan EWL, Yousaf MN. Asymmetric peptide nanoarray surfaces for studies of single cell polarization. J Am Chem Soc. 2008;130:3280–1. doi:10.1021/ja711016m.

    Article  CAS  PubMed  Google Scholar 

  31. Chan EWL, Yousaf MN. A photo-electroactive surface strategy for immobilizing ligands in patterns and gradients for studies of cell polarization. Mol Biosyst. 2008;4:746–53. doi:10.1039/b801394b.

    Article  CAS  PubMed  Google Scholar 

  32. Brock A, Chang E, Ho CC, LeDuc P, Jiang X, Whitesides GM, et al. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir. 2003;19:1611–7. doi:10.1021/la026394k.

    Article  CAS  PubMed  Google Scholar 

  33. Chaubey A, Ross KJ, Leadbetter RM, Burg KJ. Surface patterning: Tool to modulate stem cell differentiation in an adipose system. J Biomed Mater Res B Appl Biomater. 2008;84:70–8. doi:10.1002/jbm.b.30846.

    PubMed  Google Scholar 

  34. Parker KK, Brock AL, Brangwynne C, Mannix RJ, Wang N, Ostuni E, et al. Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J. 2002;16:1195–2004. doi:10.1096/fj.02-0038com.

    Article  CAS  PubMed  Google Scholar 

  35. Levon J, Myllymaa K, Kouri V-P, Rautemaa R, Kinnari T, Myllymaa S, et al. Patterned macroarray plates in comparison of bacterial adhesion inhibition of tantalum, titanium, and chromium compared with diamond-like carbon, J Biomed Mater Res Part A. doi:10.1002/jbm.a.32486.

  36. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS ONE. 2007;3:e2213. doi:10.1371/journal.pone.0002213.

    Article  ADS  Google Scholar 

  37. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ. The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials. 2008;29:970–83. doi:10.1016/j.biomaterials.2007.11.009.

    Article  CAS  PubMed  Google Scholar 

  38. Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials. 2008;29:1776–84. doi:10.1016/j.biomaterials.2007.12.026.

    Article  CAS  PubMed  Google Scholar 

  39. Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials. 2004;25:4759–66. doi:10.1016/j.biomaterials.2003.12.006.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by Finska Läkaresällskapet, the National Graduate School of Musculoskeletal Diseases and Biomaterials, NMT ERA Net project “A new generation of titanium biomaterials”, MATERA “Bioactive nanocomposite constructs for regeneration of articular cartilage”, ESF “Regenerative Medicine”, TEKES “Nanorobotics for medical diagnostics and therapy”, EVO grants and Sigrid Jusélius Foundation. The authors acknowledge the staff of the Microsensor Laboratory of Applied Sciences for assistance with the microfabrication processes and AFM imaging. We thank Electron Microscopy Unit of the Institute of Biotechnology-University of Helsinki for providing laboratory facilities and VTT Technical Research Centre of Finland for sterilizing samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reijo Lappalainen.

Additional information

S. Myllymaa and E. Kaivosoja contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myllymaa, S., Kaivosoja, E., Myllymaa, K. et al. Adhesion, spreading and osteogenic differentiation of mesenchymal stem cells cultured on micropatterned amorphous diamond, titanium, tantalum and chromium coatings on silicon. J Mater Sci: Mater Med 21, 329–341 (2010). https://doi.org/10.1007/s10856-009-3836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3836-8

Keywords

Navigation