Skip to main content
Log in

Structural and particle size evolution of sol–gel-derived nanocrystalline hydroxyapatite

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

An easy alkoxide-based sol–gel method based on Ca(NO3)2·4H2O and triethyl phosphate [PO(OC2H5)3; TEP] as Ca and P precursors have been developed to synthesize nano-hydroxyapatite (HA). The structural evolution of the samples was studied using X-ray diffraction (XRD), thermal behavior, infrared analysis, and elemental analysis via scanning electron microscopy. It is noticeable that raising of the firing temperature resulted in increasing the HA content as the dominant phase at 600 and 700 °C. The phase transformation from amorphous to crystalline HA occurred at the low temperature of 400 °C, while at higher temperatures other Ca–P compounds as secondary phases transformed to HA. The crystallite size distributions and micro-strain of the HA samples produced were characterized by XRD methods with the aid of Scherrer and Williamson–Hall equations. The results of transmission electron microscopy as a complementary and reliable technique are in good agreement with those obtained from XRD. The results indicate that increasing the firing temperature caused permanent growth of mean crystallite size and a decrease in micro-strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.S. Posner, Physiol. Rev. 49(4), 760–792 (1969)

    CAS  Google Scholar 

  2. M.J. Glimcher, Philos. Trans. R. Soc. Lond. 304B, 479–508 (1984)

    Article  Google Scholar 

  3. M. Vallet-Regi, J.M. Gonzalez-Calbet, Prog. Solid State Chem. 32, 1–31 (2004)

    Article  CAS  Google Scholar 

  4. E.E. Berry, J. Inorg. Nucl. Chem. 29, 317–327 (1967)

    Article  CAS  Google Scholar 

  5. J.E. Easton, The chemical composition of bone, in Biochemists Handbook, ed. by C. Long (Princeton, Van Nostrand, 1961), pp. 715–720

    Google Scholar 

  6. A. Carradò, N. Viart, Solid State Sci. 12, 1047–1050 (2010)

    Article  Google Scholar 

  7. X. Guo, H. Yan, S. Zhao, Z. Li, Y. Li, X. Liang (2013) Adv. Powder Technol. doi:10.1016/j.apt.2013.03.002

  8. J. Klinkaewnarong, E. Swatsitang, S. Maensiri, Solid State Sci. 11, 1023–1027 (2009)

    Article  CAS  Google Scholar 

  9. R.H.R. Castro, K. van Benthem (eds.), Sintering: Mechanisms of Convention Nanodensification and Field Assisted Processes (Springer, Berlin, 2013), pp. 1–16

    Google Scholar 

  10. H. Eshtiagh-Hosseini, M.R. Housaindokht, M. Chahkandi, A. Youssefi, J. Non-Crys. Sol. 354, 3854–3857 (2008)

    Article  CAS  Google Scholar 

  11. D.-H. Baek, J.-K. Kim, Y.-J. Shin, G.S. Chauhan, J.-H. Ahn, K.-W. Kim, J. Power Sources 189, 59–65 (2009)

    Article  CAS  Google Scholar 

  12. U. Chaimongkon, A. Thongtha, T. Bongkarn, Curr. Appl. Phys. 11, S70–S76 (2011)

    Article  Google Scholar 

  13. N. Das, H.S. Maiti, J. Membr. Sci. 140, 205–212 (1998)

    Article  CAS  Google Scholar 

  14. C.J. Tredwin, G. Georgiou, H.-W. Kim, J.C. Knowles, Dent. Mater. 29, 521–529 (2013)

    Article  CAS  Google Scholar 

  15. M, Kamitakahara, R, Imai, K, Ioku, Materials Science and Engineering. C 33 (2013) 2446-2450

  16. W. Weng, J.L. Baptista, J. Eur. Ceram. Soc. 17, 1151–1156 (1997)

    Article  CAS  Google Scholar 

  17. K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang, J.M.F. Ferreira, Mater. Chem. Phys. 78, 767–771 (2003)

    Article  CAS  Google Scholar 

  18. K. Cheng, W. Weng, G. Han, P. Du, G. Shen, J. Yang, J.M.F. Ferreira, Mater. Res. Bull. 38, 89–97 (2003)

    Article  CAS  Google Scholar 

  19. E.K. Girija, G.S. Kumar, A. Thamizhavel, Y. Yokogawa, S.N. Kalkura, Powder Technol. 225, 190–195 (2012)

    Article  CAS  Google Scholar 

  20. M. Aminzare, A. Eskandari, M.H. Baroonian, A. Berenov, Z. Razavi Hesabi, M. Taheri, S.K. Sadrnezhaad, Ceram. Int. 39, 2197–2206 (2013)

    Article  CAS  Google Scholar 

  21. H. Eshtiagh-Hosseini, M.R. Housaindokht, M. Chahkandi, Mater. Chem. Phys. 106, 310–316 (2007)

    Article  CAS  Google Scholar 

  22. D.M. Liu, T. Troczynski, W.J. Tseng, Biomaterials 22, 1721–1730 (2001)

    Article  CAS  Google Scholar 

  23. W. Weng, G. Shen, G. Han, J. Mater. Sci. Lett. 19, 2187–2188 (2000)

    Article  CAS  Google Scholar 

  24. A. Montener, G. Gnappi, F. Ferrari, M. Cesari, M. Fini, J. Mater. Sci. 35, 2791–2797 (2000)

    Article  Google Scholar 

  25. B. Mavis, A.C. Tas, J. Am. Ceram. Soc. 83, 989–991 (2000)

    Article  CAS  Google Scholar 

  26. F. Scalera, F. Gervaso, K.P. Sanosh, A. Sannino, A. Licciulli, Ceram. Int. 39, 4839–4846 (2013)

    Article  CAS  Google Scholar 

  27. F. Bakan, O. Laçin, H. Sarac, Powder Technol. 233, 295–302 (2013)

    Article  CAS  Google Scholar 

  28. C.F. Feng, K.A. Kohr, E.J. Liu, P. Cheang, Scr. Mater. 42, 103–109 (2000)

    Article  CAS  Google Scholar 

  29. A.K. Lynna, D.L. DuQuesnay, Biomaterials 23, 1947–1953 (2002)

    Article  Google Scholar 

  30. T. Goto, I.Y. Kim, K. Kikuta, C. Ohtsuki, Ceram. Int. 38, 1003–1010 (2012)

    Article  CAS  Google Scholar 

  31. D.-H. Kim, H.-H. Chun, J.D. Lee, S.-Y. Yoon, Ceram. Int. 40, 5145–5155 (2014)

    Article  CAS  Google Scholar 

  32. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel, H. Weller, Langmuir 21, 1931–1936 (2005)

    Article  CAS  Google Scholar 

  33. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  34. P. Scherrer, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl 2 (1918) 98-100

  35. A. Weibel, R. Bouchet, F. Boulc’h, P. Knauth, Chem. Mater. 17, 2378–2385 (2005)

    Article  CAS  Google Scholar 

  36. A. Deptula, W. Lada, T. Olczak, A. Borello, C. Alvani, A. di Bartolomeo, J. Non-Cryst. Solids 147(148), 537–541 (1992)

    Article  Google Scholar 

  37. L.D. Piveteau, M.I. Girona, L. Schlapbach, P. Barboux, J.P. Boilot, B. Gasser, J. Mater. Sci. Mater. Med. 10, 161–167 (1999)

    Article  CAS  Google Scholar 

  38. K.A. Gross, C.S. Chai, G.S.K. Kannangara, B. Bin-Nissan, L. Hanley, J. Mater. Sci. Mater. Med. 9, 839–843 (1998)

    Article  CAS  Google Scholar 

  39. A. Jillavenkatesa, R. A. Condrate Sr., J. Mater. Sci. 33, 4111–4119 (1998)

    Article  CAS  Google Scholar 

  40. D.M. Liu, T. Troczynski, W.J. Tseng, Biomaterials 23, 1227–1236 (2002)

    Article  CAS  Google Scholar 

  41. C.M. Lopatin, V. Pizziconi, T.L. Alford, T. Laursen, Thin Solid Films 326, 227–232 (1998)

    Article  CAS  Google Scholar 

  42. L.-Y. Huang, K.-W. Xu, J. Lu, J. Mater. Sci. Mater. Med. 11, 667–673 (2000)

    Article  CAS  Google Scholar 

  43. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedure for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)

    Google Scholar 

  44. D. Balzar, Defect and Microstructure Analysis from Diffraction (Oxford University Press, New York, 1999)

    Google Scholar 

  45. E. Tkalcec, M. Sauer, R. Nonninger, H. Schmidt, J. Mater. Sci. 36, 5253–5263 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MCH wishes to thank to the Hakim Sabzevari University (HSU) for financial support of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Chahkandi or Masoud Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chahkandi, M., Mirzaei, M. Structural and particle size evolution of sol–gel-derived nanocrystalline hydroxyapatite. J IRAN CHEM SOC 14, 567–575 (2017). https://doi.org/10.1007/s13738-016-1005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-016-1005-9

Keywords

Navigation