Skip to main content

Advertisement

Log in

Synthesis and characterization of sintered hydroxyapatite: a comparative study on the effect of preparation route

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) is prepared synthetically by three different routes—wet chemical coprecipitation, sol–gel, and solution combustion routes. Different characterizations of the powders obtained from different routes were done for comparative analysis. The as-prepared powders were calcined between 600 and 1300 °C and studied for phase stability using X-ray diffraction (XRD). The thermal analysis and Fourier transform infrared (FTIR) spectroscopy analysis were also studied. The calcined powders were observed for microstructural changes at different temperatures using field emission scanning electron microscope (FESEM). The powders were then pressed to form pellets for analyzing the different sintering behavior such as dilatometry, bulk density, and apparent porosity. The sintered pellets were also examined under FESEM. It was observed that the HAp obtained from coprecipitation route (HCop) achieved the highest bulk density as well as hardest among all. Bioactivity test was also done for HCop samples for 7, 14, 21, and 28 days and observed under FESEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Uchida, A., Nade, S.M.L., McCartney, E.R., Ching, W.: The use of ceramics for bone replacement a comparative study of 3 different porous ceramics. J Bone Joint Surg. 66, 269–275 (1984)

    Article  Google Scholar 

  2. Bucholz, R.W., Carlton, A., Holmes, R.E.: Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am. 18, 323–334 (1987)

    Google Scholar 

  3. Daculsi, G., LeGeros, R.Z., Heughebaert, M., Barbieux, I.: Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int. 46, 20–27 (1990)

    Article  Google Scholar 

  4. Barrere, F., van Blitterswijk, C.A., de Groot, K.: Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine. 1, 317–332 (2006)

    Google Scholar 

  5. Arita, I.H., Castano, V.M., Wilkinson, D.S.: Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity. J Mater Sci Mater Med. 6, 19–23L (1995)

    Article  Google Scholar 

  6. Kong, L.B., Ma, J., Boey, F.: Nanosized hydroxyapatite powders derived from coprecipitation process. J Mater Sci. 37, 1131–1134 (2002)

    Article  Google Scholar 

  7. Zhang, X., Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J Cryst Growth. 308, 133–140 (2007)

    Article  Google Scholar 

  8. Kordas, G., Trapalis, C.C.: Fourier transform and multi-dimensional EPR spectroscopy for the characterization of sol-gel derived hydroxyapatite. J Sol-Gel Sci Technol. 9, 17–24 (1997)

    Google Scholar 

  9. Han, Y., Li, S., Wang, X., Chen, X.: Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method. Mater Res Bull. 39, 25–32 (2004)

    Article  Google Scholar 

  10. Tas, A.C.: Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluid. Biomaterials. 2, 1429–1438 (2000)

    Google Scholar 

  11. Zhang, Y., Zhou, L., Li, D., Xue, N., Xu, X., Li, J.: Oriented nano-structured hydroxyapatite from the template. Chem Phys Lett. 376, 493–497 (2003)

    Article  Google Scholar 

  12. Yeong, K.C.B., Wang, Y., Ng, S.C.: Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials. 22, 2705–2712 (2001)

    Article  Google Scholar 

  13. Yang, Y., Ong, J.L., Tian, J.: Rapid sintering of hydroxyapatite by microwave processing. J Mater Sci Lett. 21, 67–69 (2002)

    Article  Google Scholar 

  14. Sonoda, K., Furuzono, T., Walsh, D., Sato, K., Tanaka, J.: Influence of emulsion on crystal growth of hydroxyapatite. Solid State Ionics. 151, 321–327 (2002)

    Article  Google Scholar 

  15. Bouyer, E., Gitzhofer, F., Boulos, M.I.: Morphological study of hydroxyapatite nanocrystal suspension. J Mater Sci Mater Med. 11, 523–531 (2000)

    Article  Google Scholar 

  16. Pang, Y.X., Bao, X.: Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles. J Eur Ceram Soc. 23, 1697–1704 (2003)

    Article  Google Scholar 

  17. Ungureanu, N.D., Angelescu, N., Bacinschi, Z., Stoian, E.V., Rizescu, C.Z.: Thermal stability of chemically precipitated hydroxyapatite nanopowders. Int J Biol Biomed Eng. 5, 57–64 (2011)

    Google Scholar 

  18. Fujishiro, Y., Yabuki, H., Kawamura, K., Sato, T., Okuwaki, A.: Preparation of needle-like hydroxyapatite by homogeneous precipitation under hydrothermal conditions. J Chem Technol Biotechnol. 57, 349–353 (1993)

    Article  Google Scholar 

  19. Li, P., de Groot, K.: Better bioactive ceramics through sol-gel process. J Sol-Gel Sci Technol. 2, 797–801 (1994)

    Article  Google Scholar 

  20. Ramesh, S., Aw, K.L., Tolouei, R., Amiriyan, M., Tan, C.Y., Hamdi, M., Purbolaksono, J., Hassan, M.A., Teng, W.D.: Sintering properties of hydroxyapatite powders prepared using different methods. Ceram Int. 39, 111–119 (2013)

    Article  Google Scholar 

  21. Harabi, A., Belamri, D., Karboua, N., Mezahi, F.Z.: Sintering of bioceramics using a modified domestic microwave oven: natural hydroxyapatite sintering. J Therm Anal Calorim. 104, 383–388 (2011)

    Article  Google Scholar 

  22. Lukić, M.J., Škapin, S.D., Marković, S., Uskoković, D.: Processing route to fully dense nanostructured HAp bioceramics: from powder synthesis to sintering. J Am Ceram Soc. 95, 3394–3402 (2012)

    Article  Google Scholar 

  23. Kang, B.M., Park, H.K., Jang, J.H., Jeong, W.J., Lee, K.K., Oh, I.H., Cho, H.S., Ahn, H.G., Lim, Y.S.: A study on the sintering of HAp sputtering target material for biomedical applications. Int J Innov Res Sci Eng Technol. 3, 15068–15075 (2014)

    Article  Google Scholar 

  24. Ghosh, R., Sarkar, R., Pal, S.: Study on the development of machinable hydroxyapatite-yttrium phosphate composite for biomedical applications. Trans Ind Ceram Soc. 73, 121–125 (2014)

    Article  Google Scholar 

  25. Ghosh, R., Sarkar, R., Paul, S.: Development of machinable hydroxyapatite-lanthanum phosphate composite for biomedical applications. Mater Des. 106, 161–169 (2016)

    Article  Google Scholar 

  26. Tas, A.C.: Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials. 21, 1429–1438 (2000)

    Article  Google Scholar 

  27. Mobasherpour, I., Heshajin, M.S., Kazemzadeh, A., Zakeri, M.: Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J Alloys Compd. 430, 330–333 (2007)

    Article  Google Scholar 

  28. Zhang, Y., Lu, J.: A simple method to tailor spherical nanocrystal hydroxyapatite at low temperature. J Nanopart Res. 9, 589–594 (2006)

    Article  Google Scholar 

  29. Ramay, H.R.R., Zhang, M.: Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 25, 5171–5180 (2004)

    Article  Google Scholar 

  30. Velu, G., Gopal, B.: Preparation of Nanohydroxyapatite by a sol–gel method using alginicacid as a complexing agent. J Am Ceram Soc. 92, 2207–2211 (2009)

    Article  Google Scholar 

  31. Kim, I.-S., Kumta, P.N.: Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater Sci Eng B. 111, 232–236 (2004)

    Article  Google Scholar 

  32. Pratihar, S.K., Garg, M., Mehra, S., Bhattacharyya, S.: Phase evolution and sintering kinetics of hydroxyapatite synthesized by solution combustion technique. J Mater Sci Mater Med. 17, 501–507 (2006)

    Article  Google Scholar 

  33. Ghosh, S.K., Roy, S.K., Kundu, B., Datta, S., Basu, D.: Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions. Mater Sci Eng B. 176, 14–21 (2011)

    Article  Google Scholar 

  34. Sasikumar, S., Vijayaraghavan, R.: Synthesis and characterization of bioceramic calcium phosphates by rapid combustion synthesis. J Mater Sci Technol. 26, 1114–1118 (2010)

    Article  Google Scholar 

  35. Raynaud, P.S., Champion, E., Bernache-Assollant, D., Thomas, P.: Calcium pghosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders. Biomaterials. 23, 1065–1072 (2002)

    Article  Google Scholar 

  36. Bogdanoviciene, I., Beganskiene, A., Tõnsuaadu, K., Glaser, J., Meyer, H.J., Kareiva, A.: Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing. Mater Res Bull. 41, 1754–1762 (2006)

    Article  Google Scholar 

  37. Sasikumar, S., Vijayaraghavan, R.: Solution combustion synthesis of bioceramic calcium phosphates by single and mixed fuels—a comparative study. Ceram Int. 34, 1373–1379 (2008)

    Article  Google Scholar 

  38. Liu, D.M., Troczynski, T., Tseng, W.J.: Water based sol-gel synthesis of hydroxyapatite: process development. Biomaterials. 22, 1721–1730 (2001)

    Article  Google Scholar 

  39. Li, H., Khor, K.A., Cheang, P.: Effect of steam treatment during plasma spraying on the microstructure of hydroxyapatite splats and coatings. J Therm Spray Technol. 15, 610–616 (2006)

    Article  Google Scholar 

  40. Shahmohammadi, M., Jahandideh, R., Behnamghader, A., Rangie, M.: Sol-gel synthesis of FHA/CDHA nanoparticles with a nonstochiometric ratio. Int J Nano Dim. 1, 41–45 (2010)

    Google Scholar 

  41. Thamaraiselvi, T.V., Prabakaran, K., Rajeswari, S.: Synthesis of hydroxyapatite that mimic bone minerology. Trends Biomater Artif Organs. 19, 81–83 (2006)

    Google Scholar 

  42. Nelson, D.G., Featherstone, J.D.: Preparation, analusis and characterization of carbonated apatites. Calcif Tissue Int. 34, S69–S81 (1982)

    Google Scholar 

  43. Mostafa, N.Y.: Characterization, thermal stability and sintering of hydroxyapatite powders prepared by different routes. Mater Chem Phys. 94, 333–341 (2005)

    Article  Google Scholar 

  44. Landi, E., Tampieri, A., Celotti, G., SPrio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 20, 2377–2387 (2000)

    Article  Google Scholar 

  45. Boiko, Y., Worch, H.: Grain growth in nanocrystalline materials. Sci Sinter. 31, 151–155 (1999)

    Google Scholar 

  46. Vassen, R., Stover, D., Uhlenbusch, J.: In: Ziegler, G., Hausner, H. (eds.) Sintering and grain-growth of ultrafine amorphous SiC/Si- powder mixtures, 2nd edn, pp. 791–797. European Ceramic Society, Augsburg (1991)

    Google Scholar 

  47. Best, S., Sim, B., Kayser, M., Downes, S.: Dependence of osteoblastic response on variations in the chemical composition and physical properties of hydroxyapatite. J Mater Sci Mater Med. 8, 97–103 (1997)

    Article  Google Scholar 

  48. Eggli, P.S., Muller, W., Schenk, R.K.: Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop Relat Res. 232, 127–138 (1988)

    Google Scholar 

  49. Harabi, E., Harabi, A., Foughali, L., Chehlatt, S., Zouai, S., Mezahi, F.Z.: Grain growth in sintered natural hydroxyapatite. Acta Phys Pol A. 127, 1161–1163 (2015)

    Article  Google Scholar 

  50. Assollanta, D.B., Ababoua, A., Championa, E., Heughebaertb, M.: Sintering of calcium phosphate hydroxyapatite Ca10(PO4)6(OH)2 I. Calcination and particle growth. J Eur Ceram Soc. 23, 229 (2003)

    Article  Google Scholar 

  51. Harabi, A., Harabi, E.: A modified milling system, using a bimodal distribution of highly resistant ceramics, part 1. A natural hydroxyapatite study. Mater Sci Eng C. 51, 206–215 (2015)

    Article  Google Scholar 

  52. Muralithran, G., Ramesh, S.: The effects of sintering temperature on the properties of hydroxyapatite. Ceram Int. 26, 221–230 (2000)

    Article  Google Scholar 

  53. Juhasz, J.A., Best, S.M., Auffret, A.D., Bonfield, W.: Biological control of apatite growth in simulated body fluid and human blood serum. J Mater Sci Mater Med. 19, 1823–1829 (2008)

    Article  Google Scholar 

  54. Kim, H.M., Himeno, T., Kawashita, T., Kokubo, T., Nakamura, T.: The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment. J R Soc Interface. 12, 17–22 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the financial support of SERB, Dept. of Science & Technology (DST), Govt. of India, project grant no: SR/S3/ME/0028/2010 dated 11 January 2012. The authors also acknowledge the support of the staff of the Dept. of Ceramic Engineering, National Institute of Technology, Rourkela, for their extended support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupita Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, R., Sarkar, R. Synthesis and characterization of sintered hydroxyapatite: a comparative study on the effect of preparation route. J Aust Ceram Soc 54, 71–80 (2018). https://doi.org/10.1007/s41779-017-0128-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-017-0128-5

Keywords

Navigation