Skip to main content
Log in

Structure, morphology and electrical properties of graphene oxide: CuBiS reinforced polystyrene hybrid nanocomposites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer moieties are modified for various target applications. In the present study, an aromatic polymer polystyrene (PS) resin has been modified by loading an equal amount of graphene oxide (GO)/metal precursor copper bismuth sulphide (CuBiS) as hybrid filler. Casting of the polymer hybrid nanocomposites has been achieved by sonochemical blending. Different phases were found in the hybrid composites. X-ray diffraction confirms that the phase structure varies from amorphous to crystalline, in correlation to the decrease of the PS interlayer distance. Optical polarizing microscopy (OPM), Scanning electron microscopy (SEM) and atomic force microscopy (AFM) reveal a flocculated morphology. The flocculated regions are clearly distinguished at the topography due to the location of the hybrid entities, as confirmed by the AFM technique. The AFM micrographs reveal the interfacial phase regions of nanocomposites. The glass transition (Tg), melting (Tm) and degradation (Td) temperature of the nanocomposites improves in comparison with those of the pristine polystyrene, as confirmed by thermogravimetric analysis. The temperature dependence of the AC and DC conductivity of both the pristine polystyrene and the 10 wt% of hybrid nanocomposite, follows the principle of hopping conduction process. The PS nanocomposites may be useful for the development of various domestic and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Tian, M.E. Itkis, R.C. Haddon, Application of hybrid fillers for improving the through-plane heat transport in graphite nanoplatelet-based thermal interface layers. Sci. Rep. 5, 13108 (2015). doi:10.1038/srep13108

    Article  Google Scholar 

  2. V.P. Savchyn, A.I. Popov, Y.Y. Horbenko, V. Serga, A. Moskina, I. Karbovnyk, Cathodoluminescence characterization of polystyrene-BaZrO3 hybrid composites. Low. Temp. Phys. 42, 597 (2016). doi:10.1063/1.4959020

    Article  Google Scholar 

  3. A.M. Joseph, B. Nagendra, K.P. Surendran, E. BhojeGowd, Syndiotactic polystyrene/hybrid silica spheres of POSS siloxane composites exhibiting ultralow dielectric constant. ACS Appl. Mater. Interfaces 7(34), 19474–19483 (2015). doi:10.1021/acsami.5b05933

    Article  Google Scholar 

  4. Z. Dai, N. Zhao, H. Fan, L. Zhang, X. Zhang, J. Xu, Preparation and properties of organic–inorganic hybrid composites based on polystyrene and an incompletely condensed polyvinylsilsesquioxane oligomer. J. Appl. Polym. Sci 117, 2497–2505 (2010). doi:10.1002/app.32129

    Google Scholar 

  5. B. Zhang, R. Fu, M. Zhang, X. Dong, B. Zhao, L. Wang, C.U. Pittman Jr., Studies of the vapor-induced sensitivity of hybrid composites fabricated by filling polystyrene with carbon black and carbon nanofibers. Composites Part A 37(11), 1884–1889. doi:10.1016/j.compositesa.2005.12.024

  6. A.S. Patole, S.P. Patole, S.-Y. Jung, J.-B. Yoo, J.-H. Ana, T.-H. Kim, Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur. Polym. J. 48, 252–259 (2012). doi:10.1016/j.eurpolymj.2011.11.005

    Article  Google Scholar 

  7. M. Tamborra, M. Striccoli, R. Comparelli, M.L. Curri, A. Petrella, A. Agostiano, Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology 15, 4 (2004). doi:10.1088/0957-4484/15/4/023

    Article  Google Scholar 

  8. S. Bose, D. Shome, C.K. Das, Characterization of syndiotactic polystyrene/carbon nanofiber composites through X-ray diffraction using adaptive neuro-fuzzy interference system and artificial neural network. Arch. Comp. Mat. Sci. Surf. Eng. 1(4), 197–204 (2009)

    Google Scholar 

  9. J.-Y. Kim, T. Kim, J.W. Suk, H. Chou, J.-H. Jang, J.H. Lee, I.N. Kholmanov, D. Akinwande, R.S. Ruoff, Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler. Smal 10, 3405–3411 (2014). doi:10.1002/smll.201400363

    Article  Google Scholar 

  10. Q. Xue, Q. Guo, B. Tao, Z. Han, J. Zhang, X. Pan, Ultrahigh permittivity of polymer nanocomposites based on surface-modified amorphous carbon/MWCNTs shell/core structured nanohybrids. Compos. Part A 100, 324 (2017)

    Article  Google Scholar 

  11. M. Nie, D.M. Kalyon, F.T. Fisher, Reverse Kebab structure formed inside carbon nanofibers via nanochannel flow. Langmuir 31(36), 10047 (2015)

    Article  Google Scholar 

  12. G.-W. Lee, M. Park, J. Kim, J.I. Le, Compos. Part A, 37(5), 727–734 (2006). doi:10.1016/j.compositesa.2005.07.006

    Article  Google Scholar 

  13. P.K. Nair, M.T.S. Nair, H.M.K.K. Pathirana, R.A. Zingaro, E.A. Meyers, Structure and composition of chemically deposited thin films of bismuth sulfide and copper sulfide effect on optical and electrical properties. J. Electrochem. Soc. 140(3), 754–759 (1993). doi:10.1149/1.2056153

    Article  Google Scholar 

  14. M.A. Hubbe, in Handbook of Nanocellulose and Cellulose Nanocomposites, ed. by H. Kargarzadeh, I. Ahmad, S. Thomas, A. Dufresne. Hybrid Filler (Cellulose/Noncellulose) Reinforced Nanocomposites (Wiley, Weinheim, 2017). doi:10.1002/9783527689972.ch8

    Google Scholar 

  15. J. Anandraj, G.M. Joshi, M. Pandey, Study of polyvinylalcohol/polyionic organic semiconductor as thermistor. Adv. Mat. Proc. 2(4), 228–230 (2017). doi:10.5185/amp.2017/405

    Google Scholar 

  16. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, Graphene composite as a high performance photocatalyst, ACS Nano 4, 380–386 (2009). doi:10.1016/j.cej.2012.07.087

    Article  Google Scholar 

  17. L. Guo, C. Xiao, H. Wang, L. Chen, X. Zhang, K. Zheng, X. Tian, Thermally conductive polystyrene/epoxy nanocomposites fabricated by selective localization of hybrid fillers., Colloid Polym. Sci. 294(5), 901–910 (2016). doi:10.1007/s00396-016-3845-3

    Article  Google Scholar 

  18. L. Ruiyi, L. Zaijun, L. Junkang, Histidine-functionalized carbon-based dot-zinc(II) nanoparticles as anovel stabilizer for pickering emulsion synthesis of polystyrenemicrospheres. J. Collid Interface Sci. 493, 24–31 (2017). doi:10.1016/j.jcis.2017.01.018

    Article  Google Scholar 

  19. Y. Liu, Y. Zhang, L. Duan, W. Zhang, M. Su, Z. Sun, P. He, Polystyrene/graphene oxide nanocomposites synthesized via pickering polymerization. Prog Org. Coat. 99, 23–31 (2016). doi:10.1016/j.sporgcoat.2016.04.034

    Article  Google Scholar 

  20. J.S. An, I.J. Moon, S.H. Kwon, H.J. Choi, Swelling-diffusion—interfacial polymerized core-shell typed polystyrene/poly(3,4-ethylenedioxythiophene) microspheres and their electro-responsive characteristics. Polymer (2016). doi:10.1016/j.polymer.2017.03.027

    Google Scholar 

  21. N. Yeole, S.N.R. Kutcherlapati, T. Jana, Polystyrene–graphene oxide (GO) nanocomposite synthesized by interfacial interactions between RAFT modified GO and core-shell polymeric nanoparticles. J. Colloid Interface Sci. 443, 137–142 (2015). doi:10.1016/j.jcis.2014.11.071

    Article  Google Scholar 

  22. M.-T. Le, S.-C. Huang, Thermal and mechanical behavior of hybrid polymer nanocomposite reinforced with graphene nanoplatelets. Materials 8, 5526–5536 (2015). doi:10.3390/ma8085262

    Article  Google Scholar 

  23. M.H. Al-Saleh, Electrical and mechanical properties of graphene/carbon nanotubes hybrid nanocomposites. Synth. Met. 20, 41–46 (2015). doi:10.1016/j.synthmet.2015.06.023

    Article  Google Scholar 

  24. R. Parameshwaran, K. Deepak, R. Saravanan, S. Kalaiselvam, Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage. Appl. Energy 115, 320–330 (2014). doi:10.1016/j.synthmet.2015.06.023

    Article  Google Scholar 

  25. M. Jawaid, A. el Kacem, Nanoclay Reinforced Polymer Composites: Nanocomposites and Bionanocomposites. (Springer, Singapore, 2016)

    Book  Google Scholar 

  26. J. Anandraj, G.M. Joshi, CuBi2S3 precursor based polymer composites for low frequency capacitor applications. J. Mater. Sci. 27, 10550 (2016). doi:10.1007/s10854-016-5148-3

    Google Scholar 

  27. E. Riande, R. Diaz-Calleja, Electrical Properties of Polymers. (CRC Press, New York, 2004), ISBN 9780824753467—CAT# DK1281

    Book  Google Scholar 

  28. S. Basu, M. Singhi, B.K. Satapathy, M. Fahim, Dielectric, electrical, and rheological characterization of graphene-filled polystyrene nanocomposites. Polym. Compos. 34(12), 2082–2093 (2013). doi:10.1002/pc.22617

    Article  Google Scholar 

  29. A. Kiraly, F. Ronkay, Temperature dependence of electrical properties in conductive polymer composites. Polym. Test. 43, 154–162 (2015). doi:10.1016/j.polymertesting.2015.03.011

    Article  Google Scholar 

  30. T. Natsuki, Q.Q. Ni, S.H. Wu, Temperature dependence of electrical resistivity in carbon nanofiber/unsaturated polyester nanocomposites. Polym. Engg. Sci. 48(7), 1345–1350 (2008)

    Article  Google Scholar 

  31. D. Arthisree, G.M. Joshi, J. Mater. Sci. 18(14), 10516–10524 (2017). doi:10.1007/s10854-017-6825-6

    Google Scholar 

Download references

Acknowledgements

It is part of postgraduate work supervised by Prof. Girish M. Joshi, Polymer Nanocomposite laboratory, VIT University, Vellore, India. Prof. Teresa Cuberes for valuable subject contribution to execute the project. Authors highly thankful to the central SEM, TGA facility under DST FIST project at VIT University Vellore, TN India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish M. Joshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, V., Anandraj, J., Joshi, G.M. et al. Structure, morphology and electrical properties of graphene oxide: CuBiS reinforced polystyrene hybrid nanocomposites. J Mater Sci: Mater Electron 28, 16415–16425 (2017). https://doi.org/10.1007/s10854-017-7552-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7552-8

Navigation