Skip to main content
Log in

Bismo-borate glasses doped with La3+ and Eu3+ ions: synthesis, physical, optical and electrical characteristics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bismuth borate glasses doped with La3+ and Eu3+ rare-earth ions with chemical compositions 65B2O3 − 15CaO − 15Li2O − 5Bi2O3 − xLa2O3 − yEu2O3: (x,y) = (0.0, 0.0), (0.5,0.0), (0.5,0.3), and (0.5,0.7) mol% were synthesized using traditional melt quenching process. The obtained glasses were labeled as: La0.0Eu0.0, La0.5Eu0.0, La0.5Eu0.3, and La0.5Eu0.7, respectively. The amorphous nature of the synthesized glasses was confirmed via XRD measurements. Density and molar volume of the glasses were gradually improved from 3.048 g/cm3 and 26.727 cm3/mol for La0.0Eu0.0 sample to 3.430 g/cm3 and 29.257 cm3/mol for La0.5Eu0.7 sample. The indirect \((E_{indirect}^{Optical} )\) and direct \((E_{direct}^{Optical} )\) optical bandgap of the proposed glasses were reduced with increased La3+ and Eu3+ ions in the glass matrix. The values of the \((E_{indirect}^{Optical} )\) were 3.30, 3.15, 3.10, and 2.70 eV, while for \((E_{direct}^{Optical} )\) were 3.88, 3.80, 3.65, and 3.12 eV for La0.0Eu0.0, La0.5Eu0.0, La0.5Eu0.3, and La0.5Eu0.7, respectively. Urbach’s energy (ΔE) recorded values between 0.693 eV and 0.708 eV. Refractive index (n) varied between 2.32 and 2.46 for the indirect transitions and between 2.19 and 2.36 for the direct transition. Dielectric spectroscopy of prepared glasses was carried out through frequency domain from 50 Hz to 5 MHz at RT to investigate chemical changes on dielectric items such as dielectric constant as well as tangent loss (tan δ). The introduction of both La3+ and Eu3+ ions causes an enhancement dielectric constant as well as tangent loss (tan δ). The findings confirm that the synthesized glasses can be applied in optical fiber, solar cells, current sensors and photonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Relevant research data are included in the text of the work.

References

  1. R.A. Elsad, A.M. Abdel-Aziz, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/erbium (III) lead-borate glasses: experimental studies. J. Mater. Res. Technol. 13, 1363–1373 (2021)

    Article  CAS  Google Scholar 

  2. E. Kavaz, F.I. El Agawany, H.O. Tekin, U. Perişanoğlu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics. J. Phys. Chem. Solid 142, 109437 (2020)

    Article  CAS  Google Scholar 

  3. Y.S. Rammah, E. Kavaz, H. Akyildirim, F.I. El-Agawany, Evaluation of photon, neutron, and charged particle shielding competences of TeO2-B2O3-Bi2O3-TiO2 glasses. J. Non-Cryst. Solids 535, 119960 (2020)

    Article  CAS  Google Scholar 

  4. Y.S. Rammah, A.A. Ali, R. El-Mallawany, F.I. El-Agawany, Fabrication, physical, optical characteristics and gamma-ray competence of novel bismo-borate glasses doped with Yb2O3 rare earth. Physica B 583, 412055 (2020)

    Article  CAS  Google Scholar 

  5. A.V. Egorysheva, V.D. Volodin, T. Milenov, P. Rafailov, V.M. Skorikov, T.D. Dudkin, Glass formation in the CaO–Bi2O3–B2O3 and SrO–Bi2O3–B2O3 systems. Russ. J. Inorg. Chem. 55, 1810–1817 (2010)

    Article  CAS  Google Scholar 

  6. M.S. Shams, Y.S. Rammah, F.I. El-Agawany, R.A. Elsad, Synthesis, structure, physical, dielectric characteristics, and gamma-ray shielding competences of novel P2O5–Li2O–ZnO–CdO glasses. J. Mater. Sci: Mater. Electron 32, 1877–1887 (2021)

    CAS  Google Scholar 

  7. K. Cho, S.H. Lee, D.W. Shin, Y.K. Sun, Relationship between glass network structure and conductivity of Li2O–B2O3–P2O5 solid electrolyte. Electrochim. Acta 52, 1576–1581 (2006)

    Article  CAS  Google Scholar 

  8. K. Boonin, J. Kaewkhao, T. Ratana, P. Limsuwan, Preparation and properties of Bi2O3-B2O3-Nd2O3 glass system. Procedia Eng. 8, 207–211 (2011)

    Article  CAS  Google Scholar 

  9. S.V. Smiljanic, S.R. Grujić, M.B. Tošić, V.D. Živanović, J.N. Stojanović, S.D. Matijašević, J.D. Nikolić, Crystallization and sinterability of glass-ceramics in the system La2O3–SrO–B2O3. Ceram. Int. 40, 297–305 (2020)

    Article  CAS  Google Scholar 

  10. S. Kaewjaeng, S. Kothan, W. Chaiphaksa, N. Chanthima, R. Rajaramakrishna, H.J. Kim, J. Kaewkhao, High transparency La2O3-CaO-B2O3-SiO2 glass for diagnosis x-rays shielding. Radiat. Phys. Chem. 160, 41–47 (2019)

    Article  CAS  Google Scholar 

  11. T. Wang, S. Wang, Y. Wei, X. Zou, H. Zhang, L. Wang, Z. Guo, H. Lv, Preparation and luminescence properties of Eu2O3 doped glass-ceramics containing NaY(MoO4)2. J. Eur. Ceram. Soc. 40, 1671–1676 (2020)

    Article  CAS  Google Scholar 

  12. N. Suebsing, C. Bootjomchai, V. Promarak, R. Laopaiboon, Luminescent properties of calcium-alumino-silicate glasses (CaAlSi) doped with Sm2O3 and co-doped with Sm2O3 + Eu2O3 for LED glass applications. J. Non-Cryst. Solids 523, 119598 (2019)

    Article  CAS  Google Scholar 

  13. Y. Zhou, C. Zhu, M. Zhang, J. Liu, Optical properties of Eu- and Dy-doped calcium aluminoborosilicate glasses for LED applications. J. Alloys Compd. 688, 715–720 (2016)

    Article  CAS  Google Scholar 

  14. S. Mao, D. Abdul Hakeem, S. Su, H. Wen, W. Song, Optical properties of V, Eu doped sodium borosilicate glass. Optik 229, 166225 (2021)

    Article  CAS  Google Scholar 

  15. B.R.A. Gomes, J.F. Gomes, A. Steimacher, F. Pedrochi, R.D. dos Reis, M.J. Barboza, Optical and spectroscopic properties of Eu2+/Eu3+-doped calcium boroaluminate glasses. Opt. Mater. 122, 111727 (2021)

    Article  CAS  Google Scholar 

  16. M. Zagrai, R.-C. Suciu, S. Rada, M.E. Pică, S. Pruneanu, Structural and optical properties of Eu3+ ions in lead glass for photonic applications. J. Non-Cryst. Solids 569, 120988 (2021)

    Article  CAS  Google Scholar 

  17. A. El-Denglawey, H.M.H. Zakaly, K. Alshammari, S.A.M. Issa, H.O. Tekin, W.S. AbuShanab, Y.B. Saddeek, Prediction of mechanical and radiation parameters of glasses with high Bi2O3 concentration. Results Phys. 21, 103839 (2021)

    Article  Google Scholar 

  18. S.A.M. Issa, M. Rashad, H.M.H. Zakaly, H.O. Tekin, A.S. Abouhaswa, Nb2O5-Li2O-Bi2O3-B2O3 novel glassy system: evaluation of optical, mechanical, and gamma shielding parameters. J. Mater. Sci. Mater. Electron. 31, 22039–22056 (2020)

    Article  CAS  Google Scholar 

  19. A.M.A. Mostafa, H.M.H. Zakaly, M. Pyshkina, S.A.M. Issa, H.O. Tekin, H.A.A. Sidek, K.A. Matori, M.H.M. Zaid, Multi-objective optimization strategies for radiation shielding performance of BZBB glasses using Bi2O3: A FLUKA Monte Carlo code calculations. J. Mater. Res. Technol. 9, 12335–12345 (2020)

    Article  CAS  Google Scholar 

  20. Y.S. Rammah, S.A.M. Issa, H.M.H. Zakaly, H.O. Tekin, E. Yousef, A.S. Abouhaswa, B2O3-Bi2O3-Li2O3-Cr2O3 glasses: fabrication structure mechanical and gamma radiation shielding qualities. J. Aust. Ceram. Soc. 57(4), 1057–1069 (2021)

    Article  CAS  Google Scholar 

  21. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly boro-tellurite based glasses: TeO2 –B2O3 –ZnO–Li2O3 –Bi2O3. Ceram. Int. 47, 611–618 (2021). https://doi.org/10.1016/j.ceramint.2020.08.168

    Article  CAS  Google Scholar 

  22. H.H. Hegazy, M.S. Al-Buriahi, F.I. Faisal Alresheedi, F.I. El-Agawany, C. Sriwunkum, R. Neffati, Y.S. Rammah, Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: theoretical and simulation studies. Ceram. Int. 47, 2772–2780 (2020). https://doi.org/10.1016/j.ceramint.2020.09.131

    Article  CAS  Google Scholar 

  23. F.I. Gokhan Kilic, F.I. El Agawany, B.O. Agawany, K.A. Mahmoud, E. Ilik, Y.S. Rammah, Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: fabrication, physical, structural characterization, and radiation shielding efficacy. Opt. Mater. 112, 110757 (2021). https://doi.org/10.1016/j.optmat.2020.110757

    Article  CAS  Google Scholar 

  24. Y.S. Rammah, F.I. El-Agawany, A. Gamal, I.O. Olarinoye, E.M. Ahmed, A.S. Abouhaswa, Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of ZnO/B2O3/Bi2O3 glasses. J. Inorg. Organomet. Polym. 31, 3505–3524 (2021). https://doi.org/10.1007/s10904-021-01976-5

    Article  CAS  Google Scholar 

  25. V. Hegde, S.D. Kamath, I. Kebaili, M.I. Sayyed, K.N. Sathish, C.S.D. Viswanath, A.G. Pramod, P. Ramesh, K. Keshavamurthy, G. Devarajulu, G. Jagannath, Photoluminescence, nonlinear optical and gamma radiation shielding properties of high concentration of Eu2O3 doped heavy metal borate glasses. Optik 251, 168433 (2022)

    Article  CAS  Google Scholar 

  26. A. Wagh, Y. Raviprakash, S.D. Kamath, Gamma rays interactions with Eu2O3 doped lead fluoroborate glasses. J. Alloys Compd. 695, 2781–2798 (2017)

    Article  CAS  Google Scholar 

  27. Y.S. Rammah, M.I. Sayyed, B.O. El-bashir, S.M. Asiri, Y. Al-Hadeethi, Linear optical features and radiation shielding competence of ZnO–B2O3–TeO2-Eu2O3 glasses: Role of Eu3+ ions. Opt. Mater. 111, 110525 (2021). https://doi.org/10.1016/j.optmat.2020.110525

    Article  CAS  Google Scholar 

  28. J. Tauc, Amorphous and liquid semiconductors (Plenum Press, New York, 1974)

    Book  Google Scholar 

  29. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. A J. Theor. Exp. Appl. Phys. 22(179), 0903–0922 (1970)

    CAS  Google Scholar 

  30. R.A. Elsad, Y.S. Rammah, F.I. El-Agawany, E.M. Ahmed, M.S. Shams, Er3+/Nd3+ ions reinforced lead-borate glasses: an extensive investigation of physical, linear optical characteristics, and photon shielding capacity. J. Mater. Res. Tech. 14, 3161–3170 (2021)

    Article  CAS  Google Scholar 

  31. R. Divina, G. Sathiyapriya, K. Marimuthu, A. Askin, M.I. Sayyed, Structural, elastic, optical and γ-ray shielding behavior of Dy3+ ions doped heavy metal incorporated borate glasses. J. Non-Cryst. Solids 545, 120269 (2020)

    Article  CAS  Google Scholar 

  32. D. Souri, M. Mohammadi, H. Zaliani, Effect of antimony on the optical and physical properties of Sb-V2O5 -TeO2 glasses. Electron. Mater. Lett. 10(6), 1103–1108 (2014)

    Article  CAS  Google Scholar 

  33. G. Chasta, S.L. Himanshu, S. Patel, M.D. Chander, M.S. Kannan, M.S. Dhaka, Analysis of different vacuum annealing levels for ZnSe thin films as potential buffer layer for solar cells. J. Mater. Sci: Mater. Electron. 33, 139–157 (2022)

    CAS  Google Scholar 

  34. S. Chander, M.S. Dhaka, Thermal evolution of physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cells. J. Mater. Sci.: Mater. Electron. 27, 11961–11973 (2016)

    CAS  Google Scholar 

  35. D. Suthar, S.L. Himanshu, S. Patel, M.D. Chander, M.D. Kannan, M.S. Dhaka, Thickness and annealing evolution to physical properties of e-beam evaporated ZnTe thin films as a rear contact for CdTe solar cells. J. Mater. Sci.: Mater. Electron. 32, 19070–19082 (2021)

    CAS  Google Scholar 

  36. K. Barczak, T. Pustelny, D. Dorosz, J. Dorosz, New optical glasses with high refractive indices for applications in optical current sensors. Acta Phys. Pol. A 116, 247–249 (2009)

    Article  CAS  Google Scholar 

  37. R.O. Alekseev, N.A. Romanov, V.I. Savinkov, N.N. Klimenko, V.N. Sigaev, Multicomponent optical glasses with high refractive index. Glass Ceram. 78, 3–7 (2021)

    Article  CAS  Google Scholar 

  38. S.F.A. Ali, R.A. Elsad, S.A. Mansour, Enhancing the dielectric properties of compatibilized high-density polyethylene/calcium carbonate nanocomposites using high-density polyethylene-g-maleic anhydride. Polym. Bull. 10, 1–13 (2020)

    Google Scholar 

  39. S.A. Mansour, R.A. Elsad, M.A. Izzularab, Dielectric investigation of high density polyethylene loaded by ZnO nanoparticles synthesized by sol–gel route. J. Sol-Gel Sci. Technol. 80(2), 333–341 (2016)

    Article  CAS  Google Scholar 

  40. R.A. Elsad, S.A. Mansour, M.A. Izzularab, Loading different sizes of titania nanoparticles into transformer oil: A study on the dielectric behavior. J. Sol-Gel Sci. Technol. 93, 615–622 (2019)

    Article  CAS  Google Scholar 

  41. O.F. El-Menshawy, A.R. El-Sissy, M.S. El-Wazery, R.A. Elsad, Electrical and mechanical performance of hybrid and non-hybrid composites. Int. J. Eng. 32, 580586 (2019)

    Google Scholar 

  42. H. Li, W. Lu, W. Lei, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with ZnO–B2O3 frit. Mater. Lett. 71, 148–150 (2012)

    Article  CAS  Google Scholar 

  43. P. Zhang, Y. Wang, Y. Hua, Y. Han, L. Li, Low-temperature sintering and microwave dielectric properties of Li2ZnTi3O8 ceramics. Mater. Lett. 107, 351–353 (2013)

    Article  CAS  Google Scholar 

  44. X. Lu, Y. Zheng, Z. Dong, Q. Huang, Low temperature sintering and microwave dielectric properties of 0.6Li2ZnTi3O8–0.4Li2TiO3 ceramics doped with ZnO–B2O3–SiO2 glass. Mater. Lett. 131, 1–4 (2014)

    Article  CAS  Google Scholar 

  45. M.M. Habashy, A.M. Abd-Elhady, R.A. Elsad, M.A. Izzularab, Performance of PVC/SiO2 nanocomposites under thermal ageing. Appl. Nanosci. 11, 2143–2151 (2021)

    Article  CAS  Google Scholar 

  46. A.M. Abdel-Aziz, R.A. Elsad, E.M. Ahmed, Y.S. Rammah, F.I. El-Agawany, M.S. Shams, Physical, FTIR, ultrasonic, and dielectric characteristics of calcium lead-borate glasses mixed by Nd2O3/Er2O3 rare earths: experimental study. J. Mater. Sci.: Mater. Electron. 32, 19966–19979 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman, University Researchers Supporting Project (Grant No. PNURSP2022R60), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

NAMA: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, Supervision. ZYK: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, Supervision. YSR: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, Supervision. MSS: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, Supervision. RAE: Conceptualization, Methodology, Software, Validation, Investigation, Data Curation, Writing-Review and Editing, Visualization, Supervision.

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaif, N.A.M., Khattari, Z.Y., Rammah, Y.S. et al. Bismo-borate glasses doped with La3+ and Eu3+ ions: synthesis, physical, optical and electrical characteristics. J Mater Sci: Mater Electron 33, 19667–19677 (2022). https://doi.org/10.1007/s10854-022-08803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08803-8

Navigation