Skip to main content
Log in

Responsibility of Bi2O3 Content in Photon, Alpha, Proton, Fast and Thermal Neutron Shielding Capacity and Elastic Moduli of ZnO/B2O3/Bi2O3 Glasses

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The effect of Bi2O3 content on photon, alpha particle, proton, fast and thermal neutron shielding capacity, and elastic moduli of 10ZnO-(90-x)B2O3-xBi2O3 (ZBB-glasses): x = 25–50 mol% has been investigated. The mass density and Bi-content of the ZBB-glasses had the greatest impact on the values of mass and linear attenuation coefficients. The mass and linear attenuation coefficients values were followed the trend (ZBB25)MAC,LAC < (ZBB30) MAC,LAC < (ZBB35) MAC,LAC < (ZBB40) MAC,LAC < (ZBB45) MAC,LAC < (ZBB50) MAC,LAC. The mean free path (MFP) and half value layer (HVL) were having the same trend and opposite to which obtained in mass and linear attenuation coefficients. All the ZBB-glasses showed almost similar charged particle shielding capacity. However, ZBB50 had a comparable charged particle absorption efficiency. There was a 57% growth in fast neutron removal cross section as Bi2O3 molar concentration increased to 50% in the ZBB-glass matrix. ZBB50 possesses the highest fast neutron removal cross section among the ZBB-glasses. In terms of thermal neutron absorbing capacity, the presence of B in the glass matrix ensures that the ZBB-glasses are good thermal neutron absorption. ZBB25 has the highest thermal neutron absorption capacity among the investigated glasses. Generally, ZBB-glasses can be adopted for photon, thermal neutron, proton, and alpha particle shielding purposes. In addition, elastic (shear, longitudinal, and Young’s) moduli and Poisson’s ratio are changed significantly with the increase of Bi2O3 content mol% in ZBB-glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. K. Kaur, K.J. Singh, V. Anand, Correlation of gamma ray shielding and structural properties of PbO-BaO-P2O5 glass system. Nucl. Eng. Des. 285, 31–38 (2015). https://doi.org/10.1016/j.nucengdes.2014.12.033

    Article  CAS  Google Scholar 

  2. O. Olarinoye, C. Oche, Gamma-rays and fast neutrons shielding parameters of two new Ti-based bulk metallic glasses, Iranian Journal of Medical Physics (2020)

  3. M.I. Sayyed, I.A. El-Mesady, A.S. Abouhaswa, A. Askin, Y.S. Rammah, Comprehensive study on the structural, optical, physical and gamma photon shielding features of B2O3-Bi2O3-PbO-TiO2 glasses using WinXCOM and Geant4 code. J. Mol. Struct. 1197, 656–665 (2019)

    Article  CAS  Google Scholar 

  4. M.S. Al-Buriahi, F.I. El-Agawany, C. Sriwunkum, H. Akyıldırım, H. Arslan, B.T. Tonguc, Y.S. Rammah, Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses. Phys. B 581, 411946 (2020)

    Article  CAS  Google Scholar 

  5. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125, 717 (2019)

    Article  Google Scholar 

  6. Y.S. Rammah, M.S. Al-Buriahi, A.S. Abouhaswa, B2O3–BaCO3–Li2O3 glass system doped with Co3O4: Structure, optical, and radiation shielding properties. Phys. B 576, 411717 (2020)

    Article  CAS  Google Scholar 

  7. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Mater Chem. Phys. 213, 508–517 (2018)

    Article  CAS  Google Scholar 

  8. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses. Radiat. Phys. Chem. 81, 785–790 (2012). https://doi.org/10.1016/j.radphyschem.2012.01.049

    Article  CAS  Google Scholar 

  9. A.A.A. Darwish, S.A.M. Issa, M.M. El-Nahass, Effect of gamma irradiation on structural, electrical, and optical properties of nanostructure thin films of nickel phthalocyanine. Synth. Methods 215, 200–206 (2016). https://doi.org/10.1016/j.synthmet.2016.03.002

    Article  CAS  Google Scholar 

  10. B.O. Elbashir, M.G. Dong, M.I. Sayyed, S.A.M. Issa, K.A. Matori, M.H.M. Zaid, Comparison of Monte Carlo simulation of gamma-ray attenuation coefficients of amino acids with XCOM program and experimental data. Results Phys. 9, 6–11 (2018). https://doi.org/10.1016/j.rinp.2018.01.075

    Article  Google Scholar 

  11. V. Beir, Health Effects of Exposure to Low Levels of Ionizing Radiation, 1990

  12. S. Issa, M. Sayyed, M. Kurudirek, Investigation of gamma radiation shielding properties of some zinc tellurite glasses. J. Phys. Sci. 27, 97–119 (2016). https://doi.org/10.21315/jps2016.27.3.7

    Article  CAS  Google Scholar 

  13. S.A.M. Issa, A.A.A. Darwish, M.M. El-Nahass, The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Prog. Nucl. Energy 100, 276–282 (2017). https://doi.org/10.1016/j.pnucene.2017.06.016

    Article  CAS  Google Scholar 

  14. S.A.M. Issa, T.A. Hamdalla, A.A.A. Darwish, Effect of ErCl3 in gamma and neutron parameters for different concentration of ErCl3-SiO2 (EDFA) for the signal protection from nuclear radiation. J. Alloys Compd. 698, 234–240 (2017)

    Article  CAS  Google Scholar 

  15. S. Kaewjaeng, J. Kaewkhao, P. Limsuwan, U. Maghanemi, Effect of BaO on optical, physical and radiation shielding properties of SiO2-B2O3-Al2O3-CaO-Na2O glasses system. Procedia Eng. 32, 1080–1086 (2012). https://doi.org/10.1016/j.proeng.2012.02.058

    Article  CAS  Google Scholar 

  16. R. Mirji, B. Lobo, Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies. Phys. Chem. Radiat. 135, 32–34 (2017). https://doi.org/10.1016/j.radphyschem.2017.03.001

    Article  CAS  Google Scholar 

  17. K.J. Singh, S. Kaur, R.S. Kaundal, Comparative study of gamma ray shielding and some properties of PbO–SiO2–Al2O3 and Bi2O3–SiO2–Al2O3 glass systems. Radiat. Phys. Chem. 96, 153–157 (2014). https://doi.org/10.1016/j.radphyschem.2013.09.015

    Article  CAS  Google Scholar 

  18. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, R. El-Mallawany, Erkan Ilik, Gokhan Kilic, FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03440-5

    Article  Google Scholar 

  19. A.A. Ali, Y.S. Rammah, M.H. Shaaban, The influence of TiO2 on structural, physical and optical properties of B2O3 –TeO2 – Na2O – CaO glasses. J. Non-Cryst. Solids 514, 52–59 (2019)

    Article  CAS  Google Scholar 

  20. Y.S. Rammah, G. Kilic, R. El-Mallawany, U. Gökhan Issever, F.I. El-Agawany, Investigation of optical, physical, and gamma-ray shielding features of novel vanadyl boro-phosphate glasses. J. Non-Cryst. Solids 533, 119905 (2020)

    Article  CAS  Google Scholar 

  21. Y.S. Rammah, F.I. El-Agawany, K.A. Mahmoud, A. Novatski, R. El-Mallawany, Role of ZnO on TeO2. Li2O. ZnO glasses for optical and nuclear radiation shielding applications utilizing MCNP5 simulations and WinXCOM program. J. Non-Cryst. Solids 544, 120162 (2020)

    Article  CAS  Google Scholar 

  22. Y.S. Rammah, M.I. Sayyed, A.A. Ali, H.O. Tekin, R. El-Mallawany, Optical properties and gamma shielding features of bismuth borate glasses. Appl. Phys. A 124, 824–832 (2018)

    Article  Google Scholar 

  23. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloy. Compd. 688, 111–117 (2016)

    Article  CAS  Google Scholar 

  24. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, A. Gamal, E.S. Yousef, Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceramics Int. 46(16), 25440–25452 (2020). https://doi.org/10.1016/j.ceramint.2020.07.014

    Article  CAS  Google Scholar 

  25. B.O. El-Bashir, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material. J. Non-Cryst. Solids 468, 92–99 (2017)

    Article  CAS  Google Scholar 

  26. M.I. Sayyed, K.M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-Cryst. Solids 507, 30–37 (2019)

    Article  CAS  Google Scholar 

  27. S.A. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, M.I. Sayyed, Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code. Mater. Chem. Phys. 223, 209–219 (2019)

    Article  CAS  Google Scholar 

  28. D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, G. Bhikshamaiah, Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3 –B2O3 glasses. J. Non-Cryst. Solids 354, 5573–5579 (2008)

    Article  CAS  Google Scholar 

  29. I. Olarinoye, Variation of effective atomic numbers of some thermoluminescence and phantom materials with photon energies. Res. J. Chem. Sci 1(2), 64–69 (2011)

    Google Scholar 

  30. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23–24 (2001)

    Article  CAS  Google Scholar 

  31. I.O. Olarinoye, Photon buildup factors for some tissues and phantom materials for penetration depths up to 100 MFP. J. Nucl. Res. Dev. 13, 57–67 (2017)

    Google Scholar 

  32. I.O. Olarinoye, R.I. Odiaga, S. Paul, EXABCal: a program for calculating photon exposure and energy absorption buildup factors. Heliyon 5(7), e02017 (2019)

    Article  CAS  Google Scholar 

  33. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  34. F.H. Attix, Introduction to Radiological Physics and Radiation Dosimetry (John Wiley & Sons, 2008).

    Google Scholar 

  35. A. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010)

    Article  CAS  Google Scholar 

  36. F.A. Schmidt, Attenuation properties of concrete for shielding of neutrons of energy less than 15 MeV (No. ORNL-RSIC-26). Oak Ridge National Lab., Tenn (1970)

  37. V.F. Sears, Neutron scattering lengths and cross sections. Neutron News 3, 29–37 (1992)

    Article  Google Scholar 

  38. T. Korkut, V.V. Çay, M. Sütçü, O. Gencel, Neutron radiation tests about Fe-Cr slag and natural zeolite loaded brick samples. Sci. Technol. Nucl. Ins. (2014) 190–193

  39. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instrum. Methods B 268, 1818–1823 (2010)

    Article  CAS  Google Scholar 

  40. N. Elkhoshkhany, E. Syala, E. Yousef, Concentration dependence of the elastic moduli, thermal properties, and non-isothermal kinetic parameters of Yb3+ doped multicomponent tellurite glass system. Results Phys. 16, 102876 (2020)

    Article  Google Scholar 

  41. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, A. Gamal, E.S. Yousef, Elastic moduli, photon, neutron, and proton shielding parameters of telluritebismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses. Ceramics Int 46(16), 25440–25452 (2020). https://doi.org/10.1016/j.ceramint.2020.07.014

    Article  CAS  Google Scholar 

  42. I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, Y.S. Rammah, Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses. Ceramics Int. 46(16), 25440–25452 (2020)

    Article  Google Scholar 

  43. E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20 (2019)

    Article  CAS  Google Scholar 

  44. G. Lakshminarayana, I. Kebaili, M.G. Dong, M.S. Al-Buriahi, A. Dahshan, I.V. Kityk, T. Park, Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth boro-tellurite glass systems. J. Mat. Sci. 55(14), 5750–5771 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Taif University Researchers Supporting Project number (TURSP-2020/84), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rammah, Y.S., El-Agawany, F.I., Gamal, A. et al. Responsibility of Bi2O3 Content in Photon, Alpha, Proton, Fast and Thermal Neutron Shielding Capacity and Elastic Moduli of ZnO/B2O3/Bi2O3 Glasses. J Inorg Organomet Polym 31, 3505–3524 (2021). https://doi.org/10.1007/s10904-021-01976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01976-5

Keywords

Navigation