Skip to main content
Log in

Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Ternary glass systems of the form xSb-(60-x) V2O5-40TeO2 (Sx glasses) with 0 ≤ x ≤ 15 (in mol. %) have been prepared by using the normal melt quenching technique. The optical absorption spectra of these glasses have been recorded within wavelength range of 190 — 1100 nm. The absorption spectrum fitting method was employed to obtain the energy band gap. In this method, only the measurement of absorbance spectrum of the glass is needed. The position of the absorption edge and therefore the optical band gap values were found to be depend on glass composition. Results show that the optical band gap is in the range 1.57 — 2.14 eV. For each sample, the width of the band tail was determined. The densities of present glasses were measured and the molar volumes were calculated. Also, some thermal properties such as glass transition temperature (T g ) and crystallization temperature (TCr) were obtained by using differential scanning calorimetry (DSC) technique, and from which the glass thermal stability S and glass forming tendency K gl were calculated. Results show that these glasses (specially for x ≥ 10 mol. %) have good stability and therefore good resistance against thermal shocks for technological applications in fiber devices. Also, T g values indicate the rigidity and packing of the samples increase with increasing the Sb concentration as a network modifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Souri and S. A. Salehizadeh, J. Mater. Sci. 44, 5800 (2009).

    Article  Google Scholar 

  2. D. Souri and K. Shomalian, J. Non-Cryst. Solids. 355, 1597 (2009).

    Article  Google Scholar 

  3. D. Souri, J. Phys D: Appl. Phys. 41, 105102 (2008).

    Article  Google Scholar 

  4. D. Souri and M. Elahi, Phys. Scripta. 75, 219 (2007).

    Article  Google Scholar 

  5. D. Souri, M. Elahi, and M. S. Yazdanpanah, Cent. Eur. J. Phys. 6, 306 (2008).

    Article  Google Scholar 

  6. D. Souri and M. Elahi, Indian J. Pure Ap. Phys. 44, 419 (2006).

    Google Scholar 

  7. B. V. R. Chowdari and P. P. Kumari, J. Phys. Chem. Solids. 58, 515 (1997).

    Article  Google Scholar 

  8. V. Rajendran, N. Palanivelu, B. K. Chaudhuri, and K. Goswami, J. Non-Cryst. Solids. 320, 195 (2003).

    Article  Google Scholar 

  9. B. K. Sharma, D. C. Dube, and A. Mansingh, J. Non-Cryst. Solids. 65, 39 (1984).

    Article  Google Scholar 

  10. G. S. Murugan and Y. Ohishi, J. Non-Cryst. Solids. 341, 86 (2004).

    Article  Google Scholar 

  11. S. Jayaseelan, P. Muralidharan, M. Venkateswarlu, and N. Satyanarayana, Mater. Sci. Eng. B. 118, 136 (2005).

    Article  Google Scholar 

  12. J. Lin, W. Huang, Z. Sun, C. S. Ray, and D. Day, J. Non- Cryst. Solids. 336, 189 (2004).

    Article  Google Scholar 

  13. S. V. G. V. A. Prasad, M. S. Reddy, and N. Veeraiah, J. Phys. Chem. Solids. 67, 2478 (2006).

    Article  Google Scholar 

  14. A. A. El-Moneim, Mater. Chem. Phys. 73, 318 (2002).

    Article  Google Scholar 

  15. R. N. Sinclair, A. C. Wright, B. Bachra, Y. B. Dimitriev, V. V. Dimitriov, and M. G. Arnaudov, J. Non-Cryst. Solids. 232, 38 (1998).

    Article  Google Scholar 

  16. N. Chopra, A. Mansingh, and G. K. Chadha, J. Non-Cryst. Solids. 126, 194 (1990).

    Article  Google Scholar 

  17. A. Mansingh and V. K. Dhawan, J. Phys. C: Solid State. 16, 1675 (1983).

    Article  Google Scholar 

  18. S. Sakida, S. Hayakawa, and T. Yoko, J. Phys. Condens. Mat. 12, 2579 (2000).

    Article  Google Scholar 

  19. Y. Dimitriev, Y. Ivanova, M. Dimitrov, E. D. Lefterova, and P. V. Angelov, J. Mater. Sci. Lett. 19, 1513 (2000).

    Article  Google Scholar 

  20. M. M. El-Desoky and M. S. Al-Assiri, Mater. Sci. Eng. B. 137, 237 (2007).

    Article  Google Scholar 

  21. P. Rozier, A. Burian, and G. J. Cuello, J. Non-Cryst. Solids. 351, 632 (2005).

    Article  Google Scholar 

  22. S. Szu and F. Chang, Solid State Ionics. 176, 2695 (2005).

    Article  Google Scholar 

  23. M. M. El-Desoky, J. Non-Cryst. Solids. 351, 3139 (2005).

    Article  Google Scholar 

  24. R. El-Mallawany, A. Abousehly, and E. Yousef, J. Mater. Sci. Lett. 19, 409 (2000).

    Article  Google Scholar 

  25. H. M. M. Moawad, H. Jain, and R. El-Mallawany, J. Phys. Chem. Solids. 70, 224 (2009).

    Article  Google Scholar 

  26. I. Z. Hager, R. El-Mallawany, and M. Poulain, J. Mater. Sci. 34, 5163 (1999).

    Article  Google Scholar 

  27. R. El-Mallawany, J. Mater. Res. 5, 2218 (1990).

    Article  Google Scholar 

  28. M. Pal, K. Hirota, Y. Tsujigami, and H. Sakata, J. Phys D: Appl. Phys. 34, 459 (2001).

    Article  Google Scholar 

  29. N. Lebrun, M. Levy, and J. L. Souquet, Solid State Ionics. 40, 718 (1990).

    Article  Google Scholar 

  30. R. Jose, T. Suzuki, and Y. Ohishi, J. Non-Cryst. Solids. 352, 5564 (2006).

    Article  Google Scholar 

  31. G. S. Murugan, T. Suzuki, and Y. Ohishi, Appl. Phys. Lett. 86, 161109 (2005).

    Article  Google Scholar 

  32. E. P. Golis, M. Reben, J. Wasylak, and J. Filipecki, Opt. Appl. XXXVIII, 163 (2008).

    Google Scholar 

  33. G. S. Murugan and Y. Ohishi, J. Non-Cryst. Solids. 341, 86 (2004).

    Article  Google Scholar 

  34. Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, Mater. Chem. Phys. 113, 407 (2009).

    Article  Google Scholar 

  35. K. Aida, T. Komatsu, and V. Dimitrov, Phys. Chem. Solids. 42, 103 (2001).

    Google Scholar 

  36. G. Turky and M. Dawy, Mater. Chem. Phys. 77, 48 (2002).

    Article  Google Scholar 

  37. M. A. Sidkey, A. Abd El-Moneim, and L. Abd El-Latif, Mater. Chem. Phys. 61, 103 (1999).

    Article  Google Scholar 

  38. G. Turky and M. Dawy, Mater. Chem. Phys. 77, 48 (2002).

    Article  Google Scholar 

  39. H. N. Sooraj, G. Hungerford, R. El-Mallawany, M. J. Gomes, M. A. Lopes, N. Ali, J. D. Santos, and S. Buddhudu, J. Nanosci. Nanotechno. 9, 3672 (2009).

    Article  Google Scholar 

  40. A. Abdel-Kader, R. El-Mallawany, and M. M. Elkholy, J. Appl. Phys. 73, 71 (1993).

    Article  Google Scholar 

  41. N. F. Mott and E. A. Davis, Electronic Process in Non-Crystalline Materials, Clarendon Press Oxford, New York: Oxford University (1979).

    Google Scholar 

  42. J. Tauc and A. Menth, J. Non-Cryst. Solids. 8, 569 (1972).

    Article  Google Scholar 

  43. L. E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil, and E. V. Santiago, Appl. Surf. Sci. 254, 412 (2007).

    Article  Google Scholar 

  44. R. El-Mallawany and I. A. Ahmed, J. Mater. Sci. 43, 5131 (2008).

    Article  Google Scholar 

  45. R. El-Mallawany, I. Z. Hager, and M. Poulain, J. Mater. Sci. 37, 3291 (2002).

    Article  Google Scholar 

  46. S. Sindu, S. Sanghi, A. Agarwal, Sonam, V. P. Seth, and N. Kishore, Physica B. 365, 65 (2005).

    Article  Google Scholar 

  47. R. N. Sinclair, A. C. Wrigth, B. Bachra, Y. B. Dimitriev, V. V. Dimitrov, and M. G. Arnaudov, J. Non-Cryst. Solids. 232, 38 (1998).

    Article  Google Scholar 

  48. A. Hruby, Czech. J. Phys. 32, 1187 (1972).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariush Souri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souri, D., Mohammadi, M. & Zaliani, H. Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses. Electron. Mater. Lett. 10, 1103–1108 (2014). https://doi.org/10.1007/s13391-014-4047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4047-0

keywords

Navigation