Skip to main content
Log in

Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we report the biosynthesis of Nickel oxide (NiO) nanoparticles using Senna auriculata aqueous flower extract and their evaluated to the photocatalyst and antimicrobial activities. The synthesized nanoparticles were analysed using UV–Visible (UV–Vis), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Photoluminescence (PL), High resolution transmission electron microscopy (HR-TEM), Dynamic light scattering (DLS), Zeta potential (ZE) and Surface area analysis. The XRD shows the obtained peaks are indexed to the crystalline planes (111), (200), (220), (311) and (222) confirmed that the NiO nanoparticles possessed a good crystalline nature. UV–Vis confirmed that NiO nanoparticles had a direct bandgap at 3.25 eV. DLS analysis and ZE values validated the stability of NiO nanoparticles (53 nm and − 24 mV). HR-TEM analysis revealed that the synthesized NiO nanoparticles had a spherical structure with uniform distribution along the surface. The FT-IR analyses show that the surface of synthesized nanoparticles acts as a reducing and stabilising agent for proteins, carboxyl and hydroxyl groups. The antibacterial activities of biosynthesized NiO nanoparticles are greater against Gram-negative (Escherichia coli) than the Gram-positive microorganism. The catalyst activity of synthesized nanoparticles regarding methylene blue (MB) dye degradation under direct visible light irradiation was studied. The degradation effectiveness against MB dye was found to be 97% for 90 min. Overall, these studies show that Senna auriculata is an effective sell being planted and has the highest probability of being used in the design and development of nanoparticles for environmental pollution and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data will be made available from the corresponding author on reasonable request.

References

  1. R.C. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum, Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3, 66–98 (2020)

    Article  CAS  Google Scholar 

  2. G. Zhao, G. Xu, S. Jin, α-Fe2O3 hollow meso–microspheres grown on graphene sheets function as a promising counter electrode in dye-sensitized solar cells. RSC Adv. 9, 24164–24170 (2019)

    Article  CAS  Google Scholar 

  3. S. Tulus, M. Olthof, A. Marszalek, L.A. Peukert, B. Muscarella, O. Ehrler, Y. Vukovic, S.C. Galagan, Boehme, and E. von Hauff, Control of surface defects in ZnO nanorod arrays with thermally deposited au nanoparticles for perovskite photovoltaics. ACS App. Energy Mater. 2, 3736–3748 (2019)

    Article  CAS  Google Scholar 

  4. H. Aliah, R.N. Iman, A. Sawitri, D.G. Syarif, A. Setiawan, W. Darmalaksana, A. Malik, The optimization of ZnFe2O4/Mn2O3-based nanocomposite ceramic fabrication utilizing local minerals as an ethanol gas detector. Mater. Res. Express 6, 095908 (2019)

    Article  CAS  Google Scholar 

  5. J. Vasudevan, S. Johnson Jeyakumar, B. Arunkumar, M. Jothibas, A. Muthuvel, S. Vijayalakshmi, Optical and magnetic investigation of Cu doped ZnO nanoparticles synthesized by solid state method. Mater. Today Proceed. (2021). https://doi.org/10.1016/j.matpr.2020.12.429

    Article  Google Scholar 

  6. A. Muthuvel, M. Jothibas, C. Manoharan, Effect of chemically synthesis compared to biosynthesized ZnO-NPs using Solanum nigrum leaf extract and their photocatalytic, antibacterial and in-vitro antioxidant activity. J. Environ. Chem. Eng. 8, 103705 (2020)

    Article  CAS  Google Scholar 

  7. S.A. Akintelu, A.S. Folorunso, F.A. Folorunso, A.K. Oyebamiji, Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon 6, 2020 (2020)

    Article  Google Scholar 

  8. I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019)

    Article  CAS  Google Scholar 

  9. M. Nasrollahzadeh, S.M. Sajadi, Green synthesis of Pd nanoparticles mediated by Euphorbia thymifolia L. leaf extract: Catalytic activity for cyanation of aryl iodides under ligand-free conditions. J. Colloid Interface Sci. 469, 191–195 (2016)

    Article  CAS  Google Scholar 

  10. N. Motahharifar, M. Nasrollahzadeh, A. Taheri-Kafrani, R.S. Varma, M. Shokouhimehr, Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino- and N-sulfonyl tetrazoles in eco-friendly media. Carbohyd. Polym. 232, 115819 (2020)

    Article  CAS  Google Scholar 

  11. M.S. AlSalhi, M.H. Aziz, M. Atif, M. Fatima, F. Shaheen, S. Devanesan, W. Aslam Farooq, Synthesis of NiO nanoparticles and their evaluation for photodynamic therapy against HeLa cancer cells. J. King Saud Univ.-Sci. 32, 1395–1402 (2020)

    Article  Google Scholar 

  12. N.M. Hosny, Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 30, 470–476 (2011)

    Article  CAS  Google Scholar 

  13. Z. Sabouri, N. Fereydouni, A. Akbari, H.A. Hosseini, A. Hashemzadeh, M.S. Amiri, R. Kazemi Oskuee, M. Darroudi, Plant-based synthesis of NiO nanoparticles using salvia macrosiphon Boiss extract and examination of their water treatment. Rare Met. 39, 1134–1144 (2019)

    Article  CAS  Google Scholar 

  14. D. Zhang, Y. Jin, Y. Cao, Facile synthesis and ammonia gas sensing properties of NiO nanoparticles decorated MoS2 nanosheets heterostructure. J. Mater. Sci.: Mater. Electron. 30, 573–581 (2018)

    Google Scholar 

  15. D. Zhang, H. Chang, P. Li, R. Liu, Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection. J. Mater. Sci.: Mater. Electron. 27, 3723–3730 (2015)

    Google Scholar 

  16. A.A. Ezhilarasi, J.J. Vijaya, K. Kaviyarasu, M. Maaza, A. Ayeshamariam, L.J. Kennedy, Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J. Photochem. Photobiol., B 164, 352–360 (2016)

    Article  CAS  Google Scholar 

  17. M.Z. Nakhjiri, S. Asadi, A. Hasan, M.M.N. Babadaei, Y. Vahdani, B. Rasti, M. Ale-Ebrahim, N. Arsalan, S.V.M. Goorabjavari, S. Haghighat, M. Sharifi, K. Shahpasand, K. Akhtari, M. Falahati, Exploring the interaction of synthesized nickel oxide nanoparticles through hydrothermal method with hemoglobin and lymphocytes: Bio-thermodynamic and cellular studies. J. Mol. Liquids 317, 113893 (2020)

    Article  CAS  Google Scholar 

  18. E.R. Beach, K. Shqau, S.E. Brown, S.J. Rozeveld, P.A. Morris, Solvothermal synthesis of crystalline nickel oxide nanoparticles. Mater. Chem. Phys. 115, 371–377 (2009)

    Article  CAS  Google Scholar 

  19. L. Gnanasekaran, R. Hemamalini, R. Saravanan, K. Ravichandran, F. Gracia, S. Agarwal, V.K. Gupta, Synthesis and characterization of metal oxides (CeO2, CuO, NiO, Mn3O4, SnO2 and ZnO) nanoparticles as photo catalysts for degradation of textile dyes. J. Photochem. Photobiol., B 173, 43–49 (2017)

    Article  CAS  Google Scholar 

  20. D. Tonelli, E. Scavetta, I. Gualandi, Electrochemical deposition of nanomaterials for electrochemical sensing. Sensors 19, 1186 (2019)

    Article  CAS  Google Scholar 

  21. K. Karthik, M. Shashank, V. Revathi, T. Tatarchuk, Facile microwave-assisted green synthesis of NiO nanoparticles from Andrographis paniculata leaf extract and evaluation of their photocatalytic and anticancer activities. Mol. Cryst. Liq. Cryst. 673, 70–80 (2018)

    Article  CAS  Google Scholar 

  22. C. Díaz, M.L. Valenzuela, M.A. Laguna-Bercero, A. Orera, D. Bobadilla, S. Abarca, O. Peña, Synthesis and magnetic properties of nanostructured metallic Co, Mn and Ni oxide materials obtained from solid-state metal-macromolecular complex precursors, RSC. Advances 7, 27729–27736 (2017)

    Google Scholar 

  23. A.K. Vivekanandan, V. Subash, S. Chen, S.-H. Chen, Sonochemical synthesis of nickel-manganous oxide nanocrumbs decorated partially reduced graphene oxide for efficient electrochemical reduction of metronidazole. Ultrason. Sonochem. 68, 105176 (2020)

    Article  CAS  Google Scholar 

  24. K.S. Khashan, G.M. Sulaiman, A.H. Hamad, F.A. Abdulameer, A. Hadi, Generation of NiO nanoparticles via pulsed laser ablation in deionised water and their antibacterial activity. Appl. Phys. A 123, 3 (2017)

    Article  CAS  Google Scholar 

  25. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Synthesis of NiO Nanoparticles through Sol-gel Method. Procedia Chemistry 19, 626–631 (2016)

    Article  CAS  Google Scholar 

  26. A. Muthuvel, M. Jothibas, C. Manoharan, Synthesis of copper oxide nanoparticles by chemical and biogenic methods: photocatalytic degradation and in vitro antioxidant activity. Nanotechnol. Environ. Eng. 5, 2 (2020)

    Article  CAS  Google Scholar 

  27. M. Nasrollahzadeh, S.M. Sajadi, Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability. Ceram. Int. 41, 14435–14439 (2015)

    Article  CAS  Google Scholar 

  28. M. Nasrollahzadeh, M. Sajjadi, J. Dadashi, H. Ghafuri, Pd-based nanoparticles: plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Adv. Colloid Interface Sci. 276, 102103 (2020)

    Article  CAS  Google Scholar 

  29. J. Singh, T. Dutta, K.-H. Kim, M. Rawat, P. Samddar, P. Kumar, Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 1 (2018)

    Article  CAS  Google Scholar 

  30. A.T. Khalil, M. Ovais, I. Ullah, M. Ali, Z.K. Shinwari, D. Hassan, M. Maaza, Sageretia thea (Osbeck.) modulated biosynthesis of NiO nanoparticles and their in vitro pharmacognostic, antioxidant and cytotoxic potential. Artif. Cells Nanomed. Biotechnol. 46, 838–852 (2017)

    Article  CAS  Google Scholar 

  31. M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environ. Nanotechnol. Monitor. Manag 9, 29–36 (2018)

    Article  Google Scholar 

  32. N. Sulaiman, Y. Yulizar, Spectroscopic, structural, and morphology of nickel oxide nanoparticles prepared using Physalis angulata Leaf Extract. Mater. Sci. Forum 917, 167–171 (2018)

    Article  Google Scholar 

  33. M. Wardani, Y. Yulizar, I. Abdullah, D.O. Bagus Apriandanu, Synthesis of NiO nanoparticles via green route using Ageratum conyzoides L. leaf extract and their catalytic activity. IOP Conf. Series: Mater. Sci. Eng. 509, 012077 (2019)

    Article  CAS  Google Scholar 

  34. I. Ngom, N.M. Ndiaye, A. Fall, M. Bakayoko, B.D. Ngom, M. Maaza, On the use of moringa oleifera leaves extract for the biosynthesis of NiO and ZnO nanoparticles. MRS Advances 5, 1145–1155 (2020)

    Article  CAS  Google Scholar 

  35. S. Srihasam, K. Thyagarajan, M. Korivi, V.R. Lebaka, S.P.R. Mallem, Phytogenic generation of NiO nanoparticles using Stevia leaf extract and evaluation of their in-vitro antioxidant and antimicrobial properties. Biomolecules 10, 89 (2020)

    Article  CAS  Google Scholar 

  36. A. Angel Ezhilarasi, J. Judith Vijaya, K. Kaviyarasu, L. John Kennedy, R.J. Ramalingam, H.A. Al-Lohedan, Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J. Photochem Photobiol. B Biol. 180, 39–50 (2018)

    Article  CAS  Google Scholar 

  37. K. Saravanakumar, R.K. Sankaranarayanan, P. Sakthivel, K.C.S. Pushpa, Microwave assisted green synthesis of zinc oxide nanoparticles for biological applications, Proceedings Of Advanced Material. Eng. Technol. (2020). https://doi.org/10.1063/5.0019927

    Article  Google Scholar 

  38. L.-B. Shi, P.-F. Tang, W. Zhang, Y.-P. Zhao, L.-C. Zhang, H. Zhang, Green synthesis of CuO nanoparticles using Cassia auriculata leaf extract and in vitro evaluation of their biocompatibility with rheumatoid arthritis macrophages (RAW 2647). Trop. J. Pharmac. Res. 16, 185 (2017)

    Article  CAS  Google Scholar 

  39. S.P. Vinay, Green synthesis and characterization of silver nanoparticles using cassia auriculata leaves extract and its efficacy as a potential antibacterial and cytotoxic effect. Adv. Mater. Lett. 10, 844–849 (2019)

    Article  CAS  Google Scholar 

  40. N. Al-Zaqri, A. Muthuvel, M. Jothibas, A. Alsalme, F.A. Alharthi, V. Mohana, Biosynthesis of zirconium oxide nanoparticles using Wrightia tinctoria leaf extract: Characterization, photocatalytic degradation and antibacterial activities. Inorgan. Chem. Commun. 127, 108507 (2021)

    Article  CAS  Google Scholar 

  41. K. Lingaraju, H. Raja Naika, H. Nagabhushana, K. Jayanna, S. Devaraja, G. Nagaraju, Biosynthesis of Nickel oxide Nanoparticles from Euphorbia heterophylla (L.) and their biological application. Arab. J. Chem. 13, 4712–4719 (2020)

    Article  CAS  Google Scholar 

  42. A. Muthuvel, M. Jothibas, V. Mohana, C. Manoharan, Green synthesis of cerium oxide nanoparticles using Calotropis procera flower extract and their photocatalytic degradation and antibacterial activity. Inorgan. Chem. Commun. 119, 108086 (2020)

    Article  CAS  Google Scholar 

  43. V. Ramasamy, V. Mohana, G. Suresh, Study of Ni:CeO2 nanoparticles for efficient photodegradation of methylene blue by sun light irradiation. Indian J. Phys. 92, 1601–1612 (2018)

    Article  CAS  Google Scholar 

  44. S.H. Othman, S. Abdul Rashid, T.I. Mohd Ghazi, N. Abdullah, Dispersion and stabilization of photocatalytic TiO2 nanoparticles in aqueous suspension for coatings applications. J. Nanomater. 2012, 1–10 (2012)

    Article  CAS  Google Scholar 

  45. A. Muthuvel, K. Adavallan, K. Balamurugan, N. Krishnakumar, Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr. 4, 325–332 (2014)

    Article  Google Scholar 

  46. H. Qiao, Z. Wei, H. Yang, L. Zhu, X. Yan, Preparation and characterization of NiO nanoparticles by anodic arc plasma method. J. Nanomater. 2009, 1–5 (2009)

    Article  CAS  Google Scholar 

  47. X. Liu, X. Wu, H. Cao, R.P.H. Chang, Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 95, 3141–3147 (2004)

    Article  CAS  Google Scholar 

  48. H. Zeng, W. Cai, P. Liu, X. Xu, H. Zhou, C. Klingshirn, H. Kalt, ZnO-based hollow nanoparticles by selective etching: elimination and reconstruction of metal−semiconductor interface, improvement of blue emission and photocatalysis. ACS Nano 2, 1661–1670 (2008)

    Article  CAS  Google Scholar 

  49. A.G. Al-Sehemi, A.S. Al-Shihri, A. Kalam, G. Du, T. Ahmad, Microwave synthesis, optical properties and surface area studies of NiO nanoparticles. J. Mol. Struct. 1058, 56–61 (2014)

    Article  CAS  Google Scholar 

  50. D. Li, H. Song, X. Meng, T. Shen, J. Sun, W. Han, X. Wang, Effects of particle size on the structure and photocatalytic performance by alkali-treated TiO2. Nanomaterials 10, 546 (2020)

    Article  CAS  Google Scholar 

  51. A. Omidvar, B. Jaleh, M. Nasrollahzadeh, H.R. Dasmeh, Fabrication, characterization and application of GO/Fe3O4 /Pd nanocomposite as a magnetically separable and reusable catalyst for the reduction of organic dyes. Chem. Eng. Res. Des. 121, 339–347 (2017)

    Article  CAS  Google Scholar 

  52. M. Sankar, M. Jothibas, A. Muthuvel, A. Rajeshwari, S.J. Jeyakumar, Structural, optical and photocatalytic degradation of organic dyes by sol gel prepared Ni doped CdS nanoparticles. Surf. Interfaces 21, 100775 (2020)

    Article  CAS  Google Scholar 

  53. B.F. Mohazzab, B. Jaleh, M. Nasrollahzadeh, S. Khazalpour, M. Sajjadi, R.S. Varma, Upgraded valorization of biowaste: laser-assisted synthesis of pd/calcium lignosulfonate nanocomposite for hydrogen storage and environmental remediation. ACS Omega 5, 5888–5899 (2020)

    Article  CAS  Google Scholar 

  54. B. Jaleh, S. Karami, M. Sajjadi, B. Feizi Mohazzab, S. Azizian, M. Nasrollahzadeh, R.S. Varma, Laser-assisted preparation of Pd nanoparticles on carbon cloth for the degradation of environmental pollutants in aqueous medium. Chemosphere 246, 125755 (2020)

    Article  CAS  Google Scholar 

  55. M. Ramesh, M.P.C. Rao, S. Anandan, H. Nagaraja, Adsorption and photocatalytic properties of NiO nanoparticles synthesized via a thermal decomposition process. J. Mater. Res. 33, 601–610 (2018)

    Article  CAS  Google Scholar 

  56. N. Behera, M. Arakha, M. Priyadarshinee, B.S. Pattanayak, S. Soren, S. Jha, B.C. Mallick, Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Adv. 9, 24888–24894 (2019)

    Article  CAS  Google Scholar 

  57. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 7, 219–242 (2015)

    Article  CAS  Google Scholar 

  58. J. Iqbal, B.A. Abbasi, T. Mahmood, S. Hameed, A. Munir, S. Kanwal, Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem. 33, 8 (2019)

    Article  CAS  Google Scholar 

  59. Z. Sabouri, A. Akbari, H.A. Hosseini, A. Hashemzadeh, M. Darroudi, Eco-friendly biosynthesis of nickel oxide nanoparticles mediated by Okra plant extract and investigation of their photocatalytic, magnetic, cytotoxicity, and antibacterial properties. J. Cluster Sci. 30, 1425–1434 (2019)

    Article  CAS  Google Scholar 

  60. T. Adinaveen, T. Karnan, S.A. Samuel Selvakumar, Photocatalytic and optical properties of NiO added Nephelium lappaceum L. peel extract: an attempt to convert waste to a valuable product. Heliyon 5, 01751 (2019)

    Article  Google Scholar 

  61. A. Diallo, K. Kaviyarasu, S. Ndiaye, B.M. Mothudi, A. Ishaq, V. Rajendran, M. Maaza, Structural, optical and photocatalytic applications of biosynthesized NiO nanocrystals. Green Chem. Lett. Rev. 11, 166–175 (2018)

    Article  CAS  Google Scholar 

  62. Z. Sabouri, A. Akbari, H.A. Hosseini, M. Khatami, M. Darroudi, Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. Polyhedron 178, 114351 (2020)

    Article  CAS  Google Scholar 

  63. S.D. Khairnar, V.S. Shrivastava, Facile synthesis of nickel oxide nanoparticles for the degradation of Methylene blue and Rhodamine B dye: a comparative study. J. Taibah Univ. Sci. 13, 1108–1118 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Researchers Supporting Project number (RSP-2021/396), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors of this work sharing each other as a team group, where all of them did his best effort to manage this work.

Corresponding authors

Correspondence to V. Mohana or A. Muthuvel.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Zaqri, N., Umamakeshvari, K., Mohana, V. et al. Green synthesis of nickel oxide nanoparticles and its photocatalytic degradation and antibacterial activity. J Mater Sci: Mater Electron 33, 11864–11880 (2022). https://doi.org/10.1007/s10854-022-08149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08149-1

Navigation